$K_L ightarrow \pi^0 u \overline{ u}$ 実験(KEK-E391a)の現状

エンジニアリングラン速報

KEK-E391a 実験グループ 高エネルギー加速器研究機構 素粒子原子核研究所 稲垣隆雄 takao.inagaki@kek.jp 2002 年 12 月 11 日

はじめに

 $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊の分岐比測定を目指す E391a 実験は、10 月 30 日から約 1.5 ヶ月間のエンジニアリングランを行って いる。E391a は、2004 年 2 月から本実験を行うことを目指 して、図 1 の様なカロリメーターを主体とする測定装置を 建設している。その中で、今回のランのために用意したの は、図中の点線で囲った「下流部エンドキャップ」部分で ある。この部分には読み出し本数という点では全体の 70% 以上の測定器が配置される。また、この「下流部エンドキ ャップ」のみが、 $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊の π^0 からの 2γ の測定に 使われる。そして、他の部分は専らベトーとしてのみ使われるが、読み出しエレクトロニクスは同じである。

これらの理由から、今回のランによって、読み出し系に ついてはほとんどすべての課題、測定器や解析については 最も重要な部分を調べることが出来る。あえて、エンジニ アリングランと呼ぶ所以である。ランの目標は、エレクト ロニクス、データ採取、および解析に至る測定法をチェッ クすることと、データを使ってカロリメーターの較正をす ることである。実は、われわれはユニークな方法でこの「較 正」を試みているので、ここでは、それに焦点を絞って話 を進めたい。

図2は、下流部エンドキャップ部の測定器配置図である。 中央にビームが通過する穴があり、内から順に、タングス テンとシンチレーターを積層したカラーカウンター(6モ ジュール)、KTeV実験から借用している純CsI結晶(25 モジュール)、E162実験で使われた純CsI結晶(552モジ ュール、その内、外側の56モジュールは円形シリンダーに 合う様に削られている)、鉛・シンチレーター積層型カウ ンター(24モジュール)が、直径約2mのステンレスシリ ンダー内に設置されている。

これらを下から順に、スペーサーを挿入することなく、 しかも、相互に 0.1mm 以上の隙間も作ることなく組み上げ るのに約2ヶ月を要した。図3がその完成記念写真である。 エンジニアリングランの直前には、これらのカロリメータ ーの上流に 32 枚のプラスチックシンチレーター (CV: Charged-Veto)が設置された。これによって、荷電粒子と *γ* を区別する。

カロリメーターの較正の方法

本来、電磁カロリメーターはよく分かったエネルギーの 電子ビームを使って較正するのが基本であるが、E391a 実 験の場合は、時間的に限られていることもあって、次の様 な漸近的な方法を採用した。

宇宙線ミューオンおよびビーム中のミューオンを使う。 ビーム軸上に金属板を置き、中性粒子が衝突して生じ る π^0 、 η などからの 2γ を使う。

 $K_L \rightarrow \pi^0 \pi^0 \pi^0$ からの 6γ を使う。

プロセス で ADC とエネルギー間の換算係数を10% 以 下の精度で求め、最終的に と で、逐次法 (イテレーシ ョン)を使って1% に達することを目標とした。

あらかじめ、25 モジュール/2 日のペースで、すべてのカ ロリメーターを宇宙線によって調べた。このテストは、最 終的な使用を考慮して真空下で行われた。さらに、組み上 げ中も、一日分の積み上げが終わると、夜は宇宙線ランを 走らせて、作業によって生じたかも知れない重大な変化に 備えた。そして、組み上げ終了後には、本格的な宇宙線テ ストを行った。その結果を使って光電子増倍管に供給する 高電圧値を漸次決めていった。これらのテストでは、実際 に使用するのと同様に、長手方向を水平に置いたので、鉛 直成分の多い宇宙線はカロリメーターを横切ることになる。 たとえば、最も数の多い E162-CsI は 7cm 角で 30cm 長さの 直方体なので、ミューオンが 7cm 通過した時の応答を測る ことになる。その際に落とすエネルギーは 39.4MeV で、実 験での測定域 (GeV)より随分と小さい。これが、宇宙線

図2 下流部エンドキャップ正面図

図3 積み上げ完成記念写真(2002年9月20日)

を使った測定では換算係数をせいぜい10%の精度でしか 測れないだろうと予測した理由である。実は、これは間違 いであった。もっと精度がよかったのである。

話が前後するが、今年5月には π 2 ラインを使ってビーム テスト・T510 を行った。T510 ではサンプルとして選んだ 25本(5×5 に並べた)の CsI モジュールを電子ビームで較 正した。TOF を使って π 2 ライン自体の運動量設定確度も 調べ、補正した結果、結晶中に落としたエネルギー(デポ ジットエネルギー)と ADC 間に、0.1% オーダーの直線性 があることが判った。

さらに、T510 ではビームを使った測定と宇宙線での測定 を同じ時間内で行った。CsI が環境からの影響を受けやす いので、それを相殺するためである。図4は3GeVの電子 ビームで得た ADC スペクトルのピークと宇宙線で得たも のとの比のサンプル分布である。モジュール間のばらつき は3%以下で、このことから、宇宙線を使った較正も案外 いけるという感触を得ていた。

組み上げ後のミューオンを使った較正

さて、組み上げ後の測定に戻る。図5が、宇宙線ミュー オンによるイベントのオンラインプロットである。まず、 上から下まで通過していて、しかも直線性の良いイベント を選び出して直線近似した軌跡を求める。この軌跡から通 過厚みを個々のモジュールに対してイベント毎に求めるこ とが出来る。

Trig = 0x0010 : Nckester.

Nclus=71

図5 宇宙線ミューオンによるイベントプロット

図 6 (a) は、測定した平均電荷量(ADC分布のピークに 対応)をモジュール毎にプロットしたものである。値はデ ポジットエネルギーが 1MeV であるように規格化している。 よく揃っているのは、高電圧がうまく設定できていること を示している。

図7 (a) 2₂ の発生点の分布、(b) 2₂ の有効質量分布

K0 ラインのシャッターを閉めると 10m のシールドを突 き抜けた平行性のよいミューオンビームが得られる。得ら れたイベントから、1 モジュールにのみ信号があって、周 りのモジュールに信号がないものを選ぶと、そのモジュー ルを突き抜けたイベントサンプルが得られる。図6 (b) は、 この突き抜けミューオンを使って求めた「規格化された平 均電荷量」である。

そして、宇宙線によるものと突き抜けミューオンの比が、 図 6 (c) である。ほとんどのモジュールに対して、比が 1 になっている。モジュール間のばらつきは小さい。突き抜 けミューオンと宇宙線の通過距離には、E162-CsI では 4.29 倍、KTeV-CsI では 10 倍の違いがあるので、その間の比例 関係も確かめたことになる。20% 近くのずれを示している のは、端に置かれた細いモジュールで、隣にカロリメータ ーがなく、突き抜けミューオンが斜めにかすったイベント が混入したためと考えられる。図 6 には、積層型のカロリ メーターは含まれていないが、斜めに削った 56 モジュール が含まれている。宇宙線の軌跡を追いかけることで、通過 距離がうまく算定でき、規格化された平均電荷量を精度よ く求められたことを示している。

π^0 生成と K_L 崩壊を使った逐次法

ビーム軸上の CsI の前面から 3m のところに、厚み 2cm のアルミニューム板を置き、カロリメーター上に 2γ 信号が 見える事象を観測した。 2γ が π⁰ からのものと仮定して求 めたビーム軸上の発生点分布は図 7 (a) の様である。逆に、 発生点を板の中央として求めた 2γ の有効質量分布が、図 7 (b) である。これらの解析では、宇宙線による較正値を使 った。また、衝突するビームが細いペンシル状なので、発 生点はビーム軸上にあるとしている。

ー方、エンジニアリングランでは、各種 K_L 崩壊も測定している。図 8 は同じく宇宙線による較正値を使って求めた 6γ -イベントの有効質量分布である。 $K_L \rightarrow \pi^0 \pi^0 \pi^0$ のきれいなピークが見える。

各々のピーク付近のサンプルを使って、ピーク幅が小さ くなるように、一つ一つのモジュールの換算係数を繰り返 し修正し、より精度よい係数を得ようとするのが逐次法で ある。図 7、8 は、宇宙線による較正値を使っているので、 このプロセスのいわば出発点(初期値)である。

図8 6₇ - イベントの 6₇ の有効質量分布

図9は、 $K_L \rightarrow \pi^0 \pi^0 \pi^0$ のデータを使ってどの程度まで精度が上げられるかをシミュレーションで予測したものである。縦軸は精度、横軸はサンプル数である。宇宙線による較正が予想以上に優れていたので、数百kのサンプルで得られうる究極まで到達できそうである。我々は π^0 生成ランでは、アルミニューム板をビーム軸上の2箇所の位置に置いてそれぞれ 1.5 M(1.5×10⁶)の π^0 イベントを採り、 $K_T \rightarrow \pi^0 \pi^0 \pi^0$ は、1M イベントを集める予定である。

図 7、8 の様な π^0 や $K_L \to \pi^0 \pi^0 \pi^0$ のきれいなピークが得 られていることは、宇宙線による較正がうまくいっており、 今後の逐次法への期待も高まったことを示すだけでなく、 信号があるモジュールの空間的パターンからクラスターを 捜すルーチンなどソフトウエアもある程度整備されつつあ ることを示している。ここで強調したいのは、ラン後には、 ピークから約 10M イベントの起源の分かった γ サンプルが 得られ、カロリメーターの理解とソフトウエア開発に利用 できるという副産物があることである。

エンジニアリングランでは、他にも面白いことがあるし、 製作途上のバレルカロリメーターについても触れたいが、 別の機会に譲る。この期間には、Dubna、Chicago、釜山、 台北などの海外組と共に、佐賀、大阪、山形などから大勢 の若手や先生方がつくばに集まり、にぎやかに仕事を進め ている。読者諸氏も是非一度ご来訪くださることを願って いる。実験場所は、KEK 東カウンターホールの南側である。

図 9 逐次法で求められる精度と使用できるイベントサン プル数の関係

いくつかの線は、初期値の違いによる。初期値の精度が一番よい のが、今回の場合に当たる。