SciBooNE 実験 (FNAL E954)

Columbia University 田中 秀和 thide@fnal.gov

2007年9月12日

1 はじめに

SciBooNE 実験はフェルミ研究所 (Fermi National Accelerator Laboratory, USA) での新たなニュートリノ実 験である [1]。SciBooNE 実験は 6ヵ国の国際共同実験で, 日本からは京都大学,東京工業大学,東京大学宇宙線研 究所,KEK が参加している。

この実験は、2005 年 12 月に正式にフェルミ研究所で の実験として採択され、約1年半後(2007 年 6 月)には 物理解析用データの収集を開始している。せっかくの機 会なので自画自賛させて頂くが、近年、実験をするのに 様々な理由から、実験提案からデータ収集開始まで非常 に長い時間がかかるのが一般的になりつつある中、この 実験は驚くべきスピードでデータ収集までこぎ着けるこ とができた実験である。色々な意味で恵まれた実験であ るといえる。ここでは、SciBooNE 実験が今にいたるま での一年半を振り返りつつ、実験の現在の状況について 紹介する。

2 実験の概要

SciBooNE 実験は,K2K 実験の前置検出器として用い られていた SciBar 検出器 [2] をフェルミ研究所のブース ター・ニュートリノビームライン (BNB) に移設して実 験を行っている。SciBooNE 実験の概略図を図1に示す。 図 1 に示したように,本実験では SciBar 検出器を BNB のニュートリノ生成標的から下流 100 m の地点に移設し て実験を行っている。

本実験の主目的は,次世代ニュートリノ振動実験 T2K が目指すニュートリノ振動現象の精密測定のバックグラ ウンドである,ニュートリノと原子核の非弾性散乱事象 の散乱断面積を高精度で測定することである。

実験の動機と背景

T2K 実験の主な目的は(1) $\nu_{\mu} \rightarrow \nu_{\tau}$ 振動の精密測定 (2) 混合角 θ_{13} 測定のための,未だ発見されていない稀 振動モード $\nu_{\mu} \rightarrow \nu_{e}$ の探索である。さらに,T2K 実験の 第二期では反ニュートリノビームを用いたニュートリノ 振動の測定も予定されている。この研究は,ニュートリ ノ・反ニュートリノの振動の差,つまりニュートリノ振 動における CP 対称性の破れの検証を目的としている。

上記 T2K 実験の目的のためには, $\nu_{\mu} \rightarrow \nu_{\tau}$ 振動の精密 測定の最大のバックグラウンドとなる荷電カレント非弾 性散乱事象,「荷電カレント 1 π 生成反応 ($\nu + N \rightarrow \mu^{-} + N + \pi^{+}$)」の詳細な理解が必要である。さらに, $\nu_{\mu} \rightarrow \nu_{e}$ 稀振動探索のシグナルは非常に小さいため, バックグラ ウンドとなる中性カレント非弾性散乱事象,「中性カレント π^{0} 生成反応 ($\nu + N \rightarrow \nu + N + \pi^{0}$)」の散乱断面積を

図 1: SciBooNE 実験概略図

図 2: 現存する荷電カレント反応の散乱断面積の測定結 果。ハッチがかかっている部分が T2K 実験のエネルギー 領域に相当する。図は [3] から抜粋。

正確に理解しなくてはならない。

しかし、実際にはニュートリノ反応断面積は、T2K実 験からの要請を満たせるほどよく理解されていないのが 現状である。現時点でのニュートリノ-原子核反応がどの 程度理解されているかを見るために、既存のニュートリノ 反応断面積のデータを図2に示す。図2に見るように、既 存のニュートリノ反応のデータベースを構成している多く の測定結果は'70-'80年代に得られたもので、統計・系統的 誤差が大きい。T2K 実験のエネルギー領域(~0.8GeV) では、反応モードに依るが、現在の非弾性散乱事象の断 面積の不定性は~20%程度あり、T2K実験からの要求を 満たしていない。さらに、T2K 実験での反ニュートリノ ビームを用いたニュートリノ振動の測定に必要な反ニュー トリノ反応に関していえば、1GeV 以下の領域では過去 の測定結果が存在しない。実のところ、このエネルギー 領域は、原子核物理と高エネルギー物理の中間領域にな るため、今まで積極的には研究がされていなかった領域 といえる。

一方, K2K 実験の SciBar 検出器を用いたニュートリ ノ反応の断面積測定も精力的に行われているが,その結 果は T2K 実験とはニュートリノビームのエネルギーが異 なるため,T2K 実験にとって十分な結果を得ることは難 しい。

これを受けて、SciBooNE 実験では、T2K のエネルギー 領域にあったニュートリノビームを用いて高精度でニュー トリノ反応断面積を測定する。SciBooNE 実験とT2K 実 験で得られるニュートリノビームのエネルギー分布の比較 を図 3 に示す。図 3 に見るように SciBooNE 実験とT2K

図 3: T2K, SciBooNE, K2K 実験の三つの実験でのニュー トリノビームエネルギーの比較。

実験では得られるニュートリノビームのエネルギーが良 く一致していることが分かる。さらに、本実験の特徴の 一つとして、高強度ニュートリノビームを用いているこ とが挙げられる。BNB では、1 年で約 2 × 10²⁰ 陽子を ニュートリノ標的に供給しており(K2K での SciBar 検 出器のデータ量の約 10 倍に相当)、高いビーム強度で高 統計のデータを短期間に得ることができる。また、BNB では同一のビームラインで反ニュートリノビームも生成 することができ、SciBooNE では反ニュートリノ反応測 定をも行う。SciBooNE のエネルギー領域での反ニュー トリノ反応の測定結果は世界初となる。

3 SciBooNE 検出器

SciBooNE 実験の検出器はビーム上流から以下の三つ の検出器から構成されている。

- 1. SciBar
- 2. Electromagnetic Calorimeter (EC)
- 3. Muon Range Detector (MRD)

ここで,SciBar と EC 検出器は K2K 実験の前置検出 器として使われていたものをフェルミ研究所に輸送して 使用している。MRD はフェルミ研究所で新たに建設され た検出器である。

3.1 SciBar/EC 検出器

SciBar 検出器 [2] は約 15,000 本の押し出し型プラスチッ クシンチレータから構成されている。細い棒状のシンチ レータ $(1.3 \times 2.5 \times 300 \text{ cm}^3)$ をx, y 方向に組み合わせ, x面とy 面の2面を一組にした「レイヤー」(厚さ 2.6 cm, 幅 290 cm, 高さ 300 cm)を 64 枚組み合わせて検出器が 構成されている。

各シンチレータには波長変換ファイバーが挿入され、シ ンチレータからの光は波長変換ファイバーによって 64ch マルチ・アノード光電子増倍管 (MAPMT) に導かれる。 各 MAPMT の信号はフロントエンド電子回路によって読 み出される。

SciBar 検出器の外観図を図4に示す。

図 4: SciBar 検出器の外観図。SciBar の直下流に EC が 位置している。

シンチレータからフロントエンド電子回路までの検出 器部は温度管理した暗室の中に設置されている。暗室の 外側には,VMEクレートを配置したラックが置かれてお り,読み出し用の電子回路が配置されている。

この検出器は、シンチレータそのものがニュートリノ ビームに対しての標的である。セグメント化されたシン チレータにより、ニュートリノ事象の反応点の全立体角 を覆っており不感領域がないためニュートリノ反応の詳 細な研究が可能である。さらに、荷電粒子による各シン チレータのヒットを使って飛跡を再構成し、各シンチレー タでのエネルギー損失(*dE/dx*)を測定することで粒子 識別が可能である。

SciBar 検出器の直下流には EC 検出器が設置されてい る。EC は 11 radiation length の物質量をもつ鉛とシン チレーションファイバーから構成されているスパゲッティ カロリーメータである。x 面と y 面の各 1 面, 計 2 面か ら構成されている。EC はニュートリノビーム中に混入し た電子ニュートリノ (\leq 1%) と原子核反応から生成され る電子を識別するのに用いられる。エネルギー分解能は 14%/ \sqrt{E} である。EC は、もともとは CHORUS 実験に 使用されていたもので,K2K実験では,イタリアグルー プがそれを再利用して導入していた。SciBooNE実験で も引き続き EC はイタリアグループが検出器の導入から 維持管理/解析まで担当している。

3.2 MRD

MRD は SciBooNE 検出器の中で最下流に位置し,そ の名の通り,ニュートリノ反応から生成されたミューオ ンの運動量をレンジを用いて測定する検出器である。鉄 とシンチレータのサンドイッチの構造をしている。 MRD の外観図を図 5 に示す。

図 5: MRD の外観図。

この検出器は 12 枚の鉄板 ($305 \times 274 \times 5 \text{ cm}^3$) と 362 組 のシンチレータと光電子増倍管のセット (カウンター) か ら構成されている。カウンターは x, y 方向の向きに設置 され, x 面・y 面が交互に合計 13 面のシンチレータ面か ら構成されている。

MRD は ~1.2GeV/c までのミューオンの運動量を測定 することが可能である。

3.3 実験ホール

SciBooNE の実験ホールは BNB のニュートリノ生成標 的から下流 100m のところに約 8m の深さのホールとし て建設されている。上記 3 つの検出器は,実験ホールの 最下階に設置される。

4 実験開始までの経緯

まず,SciBooNE 実験のデータ収集開始までの経緯を 簡単にまとめると表 1 のようになる。

表 1: SciBooNE 実験の経緯。

2005 年夏	SciBooNE 実験コラボレーション成立
2005 年 12 月	SciBooNE 実験正式採択
2006年2月	SciBar/EC 検出器 KEK にて解体
2006年6-7月	SciBar/EC 検出器アメリカへ輸送
2006年9月	SciBooNE 実験ホール着工
2006年12月	EC 検出器完成
2007年2月	SciBar 検出器完成,実験ホール完成
2007年3月	MRD 検出器完成
2007年4月	検出器の実験ホールへの搬入
2007年5月	宇宙線などを用いた検出器動作確認
2007年6月	反ニュートリノデータ収集開始

表1に見るように、本実験ではフェルミ研究所の正式な 実験として採択されてからわずか1年半後には物理デー タ収集を開始している。これはもちろん実験グループの 不断の努力とそれに伴った多少の幸運によるものである が、その他の要因として、検出器の建設と実験ホールの 建設を同時に進めたことにある。つまり、検出器の建設を SciBooNE の実験ホールとは別の場所で行うことで、実 験の開始までの期間を最小にすることができた。

以下では,SciBooNE 実験のデータ収集開始までの経 緯について紹介する。

4.1 検出器の解体と輸送

前述のように,SciBar/EC 検出器は K2K 実験で使用 されていたものである。本実験ではアメリカ輸送のため に KEK で検出器の解体/梱包を行い,フェルミ研究所ま で検出器を輸送した。

4.1.1 解体

最初の解体作業は波長変換ファイバー,MAPMT,読 み出し電子回路の取り外し作業である。その作業は、2005 年11月に京都大学,東京大学,神戸大学,大阪大学の学 生およびスタッフが約15,000本のファイバー,232組の PMT とフロントエンド電子回路を一つ一つ手作業で取り 外した。

その後,2006年2月に検出器の本体であるシンチレー タの解体作業を行った。SciBar検出器本体を構成する64 枚のシンチレータレイヤを一枚一枚構造体から取り外し, 特別に製作した輸送用コンテナに収納する作業である。 SciBar の解体と同時にイタリアグループとともに EC の 解体作業も行った。

余談だが,当初 SciBar/EC の解体は年度明けを予定し ていたが,年度末に伴った種々の事情から,急きょ2 月中 に行われたものである。例年 2 月といえば年度末への秒 読みに入っており,大学・研究機関では大変に忙しい時期 である。その時期に怒濤の解体作業が行われたのである。

4.1.2 輸送

検出器の解体が完了した後,検出器をアメリカに輸送 するための準備を進めた。輸送業者の選定に始まり,輸 送方法の決定,税関手続きなど手探りの状態で行った。

この輸送では、SciBar および EC 検出器の支持構造体 以外のすべての検出器構成部品をアメリカに輸送した。た とえば、SiBar であれば、シンチレータ、MAPMT、波長 変換ファイバー、読み出し電子回路、細かい物で言えば PMT 固定用のボルトなども含まれる。

SciBar のシンチレータの輸送に関していえば,シンチ レータレイヤの大きさが一般的な輸送貨物の規格サイズ 外であったり,シンチレータの解体作業の時点からの懸 案事項であったシンチレータレイヤの強度(長距離輸送に 耐えられるのかなど)の面などを考慮して,輸送業者との 折衝を続けた。最終的には東京からシアトルまで海上輸 送,アメリカ国内はトラック輸送という方法を採用した。 それに至るまでの輸送業者との折衝は,船体のどこにど のように積み込むか,使用するトラックのサスペンショ ンの種類にまで議論が及んだ。

最終的には、2006 年 6 月末に KEK を出発して同年 7 月中旬にフェルミ研究所にすべてのものが到着した。図 6 はシンチレータがフェルミ研究所の到着し、それを検出 器建設ホールに搬入している時の様子である。

4.2 支持構造体設計

この実験では、検出器の支持構造体はアメリカで新た に設計・製作して使用している。構造体の設計作業は検 出器の解体作業や輸送準備と平行しフェルミ研究所の技 術者とともにすすめた。

本実験で使用する構造体は実のところそれほど複雑な ものではないのだが、この作業は一筋縄ではいかない長 い道のりとなった。まずインチとミリメートルといった 長さの単位の違いに起因した混乱から始まり、設計作業

図 6: シンチレータがフェルミ研究所の到着し,検出器建 設ホールへの搬入している様子。本実験では CDF の実験 ホールの一部を間借りして SciBar/EC の建設を行った。

の進め方の違いなど色々と困難があった。

たとえば、検出器に付随した物品は日本で製作されたも のであるため、すべてミリメートルを使用し、一方、構造 体に関連して使用する物品はすべてインチ(およびフィー ト)を使用せざるを得ない。この結果、構造体を含めた 検出器全体として、インチとメートルの二種の単位が混 在したものとなり、固定用のボルト一つとってもそれが ミリピッチなのかインチピッチなのかといった確認が必 要となった。そのため、輸送準備の合間をぬって幾度とな くアメリカに足を運び、技術者と議論に議論を重ね、何 度も図面を確認・変更を行った。細かいものを含めた全 ての設計が完了するまでに1年近い時間を要した。

4.3 検出器の建設

検出器の建設が始まる頃には、支持構造体の大枠は完成していたが、細かい部分の設計・製作はまだ順次すす めている状態だった。そのため、SciBar/EC、MRDの建 設作業は、支持構造体の製作日程と検出器建設のための 作業人員の手配および、その日程調整などで苦労はした が、建設作業そのものは大きなトラブルもなく概ね順調 にすすめられた。

SciBar/EC

SciBar シンチレータの組み立て作業は 2006 年 11 月末 からフェルミ研究所の技術者を含めて総勢 4 人で行われ た。図 7 がシンチレータの組み立て作業の様子である。

図 7: SciBar 検出器のシンチレータ組み立て作業の様子。

シンチレータの組み立て完了後,2006 年 12 月のクリ スマス直前に EC 検出器の組み立て作業が完了した。

翌年1月から SciBar のファイバー・MAPMT・フロン トエンド電子回路の導入作業が行われた。これは解体の ときと同様に一つ一つ手作業で導入された。この作業は, 3カ国7つの大学から共同研究者およびボランティアで参 加してくれた学生,総勢20名で導入作業をおこなった。 その内日本人の学生が10名を占め,スタッフも含めると 日本の大学からは14名が参加した。図8はファイバー導 入作業の様子である。

MRD

MRDは、鉄板、シンチレータ、光電子増倍管 (PMT), など検出器のほとんどの部分を過去の実験で使用されたも のを利用している。そのため、まずは必要な物品、PMT・ シンチレータ・ケーブルなどを手に入れることに奔走す ることとなった。たとえば PMT は、当初想定していた 種類の PMT の数量が入手できず、フェルミ研究所だけ ではなく、いくつかの機関から集めた5種の PMT の混 成となった。後に、このことによる苦労も多かったが、最 終的には後述のように実験で目指す物理から要求される 性能を満たした検出器が完成している。

MRD のカウンターの製作から検出器の組み立てには, 4 カ国 9 つの大学・機関から総勢 20 名の共同研究者が参 集した。図 9 は MRD 建設時の様子である。

図 8: SciBarの波長変換ファイバーの導入作業の様子(上) とファイバーなどの導入作業完了後の集合写真(下)。

上記三つの検出器は検出器組み立て完了後,ケーブル を配線し,宇宙線を用いての検出器の動作確認を行った。 そこですべてのシステムが問題なく動作することを確認 した上で,検出器の実験ホールへの移動準備が行われた。

4.4 実験ホールの建設

検出器の建設と平行に実験ホールの建設も 2006 年 9 月 に着工した。図 10 は実験ホールの起工式の様子である。 2007 年 2 月に建屋が完成し,その後電源の整備などの施 設工事,実験ホールの測量などが行われ,最終的には 2007 年 4 月に実験ホールの検出器搬入準備が整った。

図 9: MRD のカウンターの取り付け作業中の様子(上) と MRD 建設完了時の集合写真(下)。

4.5 検出器の実験ホールへの移動

実験ホール,検出器の組み立て完了後,SciBar/ECと MRDの実験ホールへの導入作業が行われた。

構造体を含めた検出器の重量は,SciBar/EC,MRD で それぞれ 38 トン,50 トンとさほど大きな物ではないが, 実験ホールへ導入作業は建屋の屋根を外し,上から地下 8m まで検出器を下ろすため,大型移動クレーン (360 ト ンクレーン) での大掛かりな作業となった (図 11)。

検出器の実験ホールへの移動は 2007 年 4 月に 2 日間に 分けて行われ、初日は MRD、後日 SciBar/EC の順に搬 入作業が行われた。図 11 が MRD の実験ホールへの搬入 作業の様子である。

図 11 を見て分かるように、本実験の実験ホールは検 出器に比べ一回り大きい程度でしかない。本実験の実験 ホールはフェルミ研究所の中で最小の実験ホールである。 図 12 は SciBar 検出器の実験ホールへの搬入の様子であ

図 10: 実験ホール起工式の集合写真。

図 11: MRD の実験ホールへの搬入の様子。

る。図 12 から分かるように検出器を設置する以外のス ペースがまったくない実験ホールである。そのため、実 験ホールに搬入するものと、その搬入手順には細心の注 意が払われた。

その一つの例として,各検出器は実験ホールへの搬入 の前に,検出器の動作確認のために一度ケーブルを検出 器に繋いでいたが,検出器搬入の際のダメージの可能性 を最小にするため,および検出器搬入の際の十分な作業 スペースを確保するために,実験ホールに搬入の際には ほぼすべてのケーブルを検出器から取り外した。

図 12: SciBar/EC の実験ホールへの搬入の様子。クレー ンで下ろされているのが SciBar/EC である。その手前に 写っているのが既に搬入された MRD である。

4.6 データ収集開始

検出器などの実験ホールへの搬入後,約2週間かけて 再びケーブリング作業が行われた。

その後,宇宙線を用いたコミッショニング,加速器の ビームタイミングを用いたトリガーシステムの動作確認 の後,2007年5月末,SciBooNE実験での初のニュートリ ノイベントが観測された。このニュースは2007年5月30 日から開催されていたニュートリノの国際会議 NuInt07 に於いて報告された[4]。

物理解析に使用可能なデータを 2007 年 6 月 8 日から収 集している。

5 SciBooNE 実験の現在

現在,実験ホールで収集した宇宙線のデータを用いた 検出器の性能評価と反ニュートリノビームのデータを鋭 意解析中である。

ここでは,現在までに得られている検出器の性能評価の結果と SciBooNE 実験で得られたニュートリノデータの解析の一端を紹介する。

図 13 に宇宙線ミューオンを用いて評価した MRD の典 型的な検出効率を示す。各カウンターの検出効率は 99%以 上あり、カウンター間の隙間のために多少検出効率が落 ちるものの、MRD 全体の検出効率としては 98.5%を上回

図 13: MRD の典型的なヒット検出効率。各点はカウン ター上のヒットの位置を表しており,色分けされた線が各 カウンターの検出効率である。すべてのカウンターにつ いて足し合わせたものが黒の点で表されており,それが MRD の典型的なシンチレータ面の検出効率に相当する。

る。これはニュートリノ反応の物理解析を行うのに十分な 性能を実現している。また,SciBar でも宇宙線ミューオ ンを用いた性能評価を行った。宇宙線ミューオンに対して のシンチレータ各チャンネルの光量は~20 光電子/1.3cm と十分な光量が得られることが確認された。SciBar の各 シンチレータレイヤー当たりの検出効率は 99.8%以上で ある。

シンチレータの光量,波長変換ファイバーの減衰長な ど SciBar 検出器の性能は,太平洋を渡った後でも K2K-SciBar と同等であることが確認された。

検出器の性能評価とともに、ニュートリノデータの解析 も開始している。図 14 は、SciBooNE 実験開始から 2007 年 8 月 1 日現在までに、ニュートリノ生成標的に供給され た積算陽子数である。2008 年 8 月のフェルミ研究所の夏 季シャットダウンまでに供給された全陽子数は~5×10¹⁹ で、K2K-SciBar の時の倍以上の陽子が 2ヶ月弱で供給さ れている。

図 15 は SciBar の TDC 分布である。図中の 12~14µ 秒が BNB のビームタイミングに相当する。荷電カレン ト・ニュートリノ事象を見つけるためのいくつか条件を 要求することにより,図 15 に見るように,ビームタイミ ングに同期して TDC ヒットにピークが見られ,ニュート リノ起源の事象を観測していることが分かる。

図 16 は、図 15 と同じ条件下で、荷電カレント事象の候 補の数をニュートリノ生成標的に供給された陽子の数で週

図 14: SciBooNE がデータ収集を開始からニュートリノ ビーム生成標的に供給された積算陽子数。

図 15: SciBar TDC 分布。横軸は時間 (µsec),縦軸がヒッ ト数である。

間ごとに規格化した分布である。図中の点線は±10%を示 している。図に見るようにニュートリノ事象数は10%以 内で安定しており、ニュートリノビーム、SciBooNE検出 器ともに安定して動作していることが分かる。

MRDでも図 16 と同様の MRD 検出器内で起こったニ ユートリノ事象数の評価がなされている。SciBar と MRD で事象選定の条件が異なってはいるが,両検出器で得ら れたニュートリノ事象数を検出器の質量で規格化すれば 概ね一致しており,検出器と BNB はわれわれの期待通 り動作していることを確認している。ただし,上記の結 果は検出器と BNB の安定性を評価するためのものであ り,さらに詳細なニュートリノ反応の解析は現在進行中 である。

図 16: SciBar での荷電カレント事象の候補の数をニュー トリノ生成標的に供給された陽子の数で一週間ごとに規格 化した分布である。図中の横線は±10%を意味している。

以下では実験開始直後に SciBooNE 検出器で観測した ニュートリノ事象を紹介する。

図 17に SciBooNE で得られたニュートリノ事象のイベ ントディスプレイを示す。図中では、ニュートリノは左 から右の方向に走っている。また、上流から SciBar, EC, MRD の順である。イベントディスプレイ中の SciBar 上 にある赤丸はシンチレータのヒットを表しており、赤丸 の大きさは ADC の値に対応している。また、SciBar 上 の四角は TDC のヒットを意味している。SciBar 直下流 に位置している EC から延びている棒の長さは EC で得 られた ADC の値に相当する。MRD 上の縁取られた四角 はビームタイミングに同期した TDC のヒットを意味し ている。

図 17 に見るように,SciBar 検出器内から走り出した 荷電粒子が EC を突き抜けて MRD を 4 層突き抜けて止 まっていることがわかる。MRD に突き抜けている飛跡が ミューオンであると考えられる。また,SciBar 上にはミ ューオンの飛跡以外にも光量の大きいヒットを伴った飛跡 があり,これは陽子の飛跡だと考えられる。ミューオンと 陽子の飛跡の始点が離れていることから,ニュートリノ反 応で反跳された中性子が数 10cm ほど走ってから他の原子 核内の陽子をたたき出したと考えられる。これは反ニュー トリノの荷電カレント準弾性散乱事象 ($\bar{\nu} + p \rightarrow \mu^+ + n$) の典型的な例の一つである。

上記とは対照的に,図 18 にみるようにミューオンと陽 子の飛跡の始点が一致している事象もある。これは BNB の反ニュートリノビーム中に ~30%程度含まれていると 予想されているニュートリノの荷電カレント準弾性散乱

図 17: 反ニュートリノの荷電カレント準弾性散乱事象 $(\bar{\nu} + p \rightarrow \mu^+ + n)$ の候補。

図 18: ニュートリノの荷電カレント準弾性散乱事象 ($\nu + n \rightarrow \mu^- + p$)の候補。

事象 $(\nu + n \rightarrow \mu^- + p)$ であると考えられる。

図 19~21 に様々なニュートリノ事象を示す。

この他にも SciBooNE 検出器がとらえた様々なニュー トリノ反応がある。2007 年 6 月から 2007 年 8 月までに, 反ニュートリノビームモードで収集されたニュートリノ 反応は概算で 16,000 事象以上記録されていると見積もら れている。反ニュートリノのデータは現在鋭意解析中で ある。また,フェルミ研究所の夏季シャットダウンが明け る 2007 年 10 月からはニュートリノモードでのデータ収 集を行う予定である。

6 さいごに

SciBooNE実験は始まったばかりであり、これからデー タ収集とともに物理解析に全力を尽くし、多くの新しい 物理結果が得られることを期待している。

図 19:1トラック事象。反ニュートリノ荷電カレント準 弾性散乱事象だと考えられる。図 17との違いは終状態の 反跳中性子が周りの原子核と反応し陽子をたたき出す事 なく吸収された事象であると考えられる。

図 20: 中性カレント π^0 生成事象の候補。 $\pi^0 \rightarrow \gamma \gamma$ で二つ の γ が両方とも e^+e^- に対生成している。 π^0 生成点に比 較的大きなヒットがある。これはニュートリノ反応で反跳 された核子に起因したものと考えられ、この点がニュー トリノ事象の反応点(バーテックス)だと推測できる。

SciBooNE 実験は大変多くの方々からご支援を頂いた からこそ,ここまで来ることができた実験です。特に,元 KEK 機構長 戸塚洋二先生,KEK 素核研主幹 西川公一郎 先生のご尽力なくしては SciBooNE 実験は実現しません でした。この場をお借りして,心から感謝申し上げます。

SciBar/EC 検出器の解体の際には KEK にいらっしゃ る皆様に様々な面からご支援・ご協力を頂くことが出来 なかったら現在の SciBooNE 実験は存在しません。特に 田井野先生には KEK での SciBar/EC 検出器の解体作業 で,連日の強行スケジュールのなか,精力的に作業をして くださったこと,私のような若輩者のやっかいなお願い を快く引き受けてくださったこと,心より感謝申し上げ ます。KEK 素核研の家入先生には,KEK の施設の使用 など様々な面で大変お世話になりました。また,SciBar のファイバーなど取り外し作業では東京大学,神戸大学, 大阪大学,京都大学から学生・スタッフの多大な協力が ありました。

フェルミ研究所での検出器の建設作業では,東京工業 大学,京都大学,東京大学,さらに韓国,スペイン,イタ

図 21: マルチトラック事象。たとえば深非弾性散乱事象 などが考えられる。

リア,イギリス,アメリカの大学から数多くの学生の協 力を頂きました。この実験立ち上げに携わってくださっ た皆様に,この場を借りて心より御礼申し上げます。

SciBooNE 実験は、日米科学技術協力事業(高エネル ギー物理分野)、科学研究費補助金、学振二国間交流事 業(日米共同研究)の援助により実施されています。ま た、京都大学 COE21 世紀プログラム「物理学の多様性 と普遍性の探求拠点」、東京大学素粒子物理国際研究セ ンター「平成18年度 ICEPP フェロー」、日本学術振興 会 海外特別研究員制度から援助を受けています。

参考文献

- A. A. Aguilar-Arevalo *et al.* [SciBooNE Collaboration], arXiv:hep-ex/0601022. SciBooNE website: http://www-sciboone.fnal.gov/
- [2] K. Nitta *et al.*, Nucl. Instrum. Meth. A 535 (2004)
 147 [Nucl. Phys. Proc. Suppl. 139 (2005) 289]
- [3] M. H. Ahn *et al.* [K2K Collaboration], Phys. Rev. D 74 (2006) 072003 [arXiv:hep-ex/0606032].
- [4] Fifth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07), Fermilab, USA, May 30, 2007 - June 3, 2007. SciBooNE talks by R. Napora (PUC), Y. Nakajima (Kyoto University). NuInt07 website: http://conferences.fnal.gov/nuint07/.