230

ATF2 ビームライン運転開始

高エネルギー加速器研究機構 加速器研究施設

照 沼 信 浩 奥 木 敏 行

nobuhiro.terunuma@kek.jp

toshiyuki.okugi@kek.jp

2009年(平成21年)2月10日

1. はじめに

先端加速器試験装置 ATF は,国際リニアコライダー計画 (ILC, International Linear Collider) [1]を中心とした将来の 加速器に必要とされる数多くのビーム計測技術およびビー ム制御技術の開発研究を行っている。特に, ATF ダンピン グリングで生成される電子ビームのエミッタンス(ビーム 内の個々の粒子の位置と運動量の広がりを表す指標)は, 世界トップクラスの小さな値であり,ILC で要求されるエ ミッタンスを達成している。ATF は,この超低エミッタン スビームを用いたビーム技術開発を行える特徴のある加速 器である。加速器技術開発に特化して運転をおこなってい る加速器は世界的にも少なく,加速器研究者や技術者の立 場から見ると非常に貴重な存在である。そのため,国内外 の大学および研究機関から,学生を含めた多くの研究者が 開発実験のため頻繁に ATF を訪れており、また最近では海 外からの長期滞在者も増えるなど, ATF への関心の高さが 伺える。

今回,運転を開始したビームラインは,ILC の最終収束 系の試験および技術開発を行うことを目的に建設されたも のである。ここでの研究テーマは,それまでのATFと区別 されて議論して来た経緯があり,最終収束ビームラインで の研究計画の総称をATF2計画[2,3]と呼んでいる。ATFと いう組織は一つであるが[4],その研究テーマにより概して ATFとはダンピングリングまでで行われているもの,ATF2 とはその下流の最終収束ビームラインでの開発研究を意味 する(図1)。

2. ATF2 計画

ILC の加速器技術開発では,超伝導加速空洞による高周 波技術開発[5]と共に,高いルミノシティの実現も極めて重 要な研究課題である。

円形加速器において,ビームは周回毎に衝突を繰り返す が,線形加速器の場合は1回しか衝突を起こせない。その ため,ILC では高いルミノシティを実現するために,衝突 点において電子および陽電子ビームを垂直方向で数ナノメー トル,水平方向で数百ナノメートルという極小サイズまで 絞り,正確に衝突させることが求められている。

図1:ATF全体図 左上のATF2ビームライン下流部(灰色)は床補強工事を行いシールドが新設された。

ILC のような線形加速器の衝突点で電子ビームのサイズ を絞るためには,まず非常に質のよいビームを作ることが 重要で,次に非常に質のよいレンズ系を使ってビームを絞 ることが大切になる。ATF で実現された超低エミッタンス ビームは,ILC で高ルミノシティを実現するために必要な レベルを達成している。ATF2 計画は,この超低エミッタ ンスビームを利用して,

Phase 1: 35 nm のビームサイズの実現

Phase 2:nm レベルでのビーム軌道制御

の技術開発を行う計画である。計画の Phase 1 は,質のよ いレンズ系を作る技術開発に相当する。また,Phase 2 は, 非常に小さく絞り込んだビーム同士を衝突させるために必 要な技術の確立を目指すものである。これらは ILC で高い ルミノシティを実現するために必要不可欠な技術開発であ る。

リニアコライダーの最終収束系の試験は,1994 年から SLACにおいて SLCの45GeV 電子ビームを利用した Final Focus Test Beam (FFTB) で行われた。ここでは設計値 47 nm に対して約 70 nm までビームが絞れたことを確認し ている[6]。この実測したビームサイズは世界最小のもので ある。ビームサイズは新竹氏が考案実現したレーザー干渉 縞を利用するモニター[7]で測定された。FFTB実験当時は, ビームパルスごとにナノメートルレベルでビーム位置を測 定する技術が確立しておらず,設計値と測定値の差はビー ムジッターに起因するのか、ビーム自体が十分に絞られて いないためか,判断が出来なかった。FFTB では多くの成 果が得られたが、この設計値と測定値の違い、ビームの安 定性など、いくつかの問題を残して実験が終了した。ATF2 計画では FFTB の経験を元に,ビームサイズモニターと共 に高分解能のビーム位置モニターを用いることにより、ビー ムジッターの効果を切り離してビームサイズの測定を行う。

ILC 最終収束系の光学設計も FFTB 当時から大きく変更 されている。このため,新たなビーム光学系の試験を行う ことも ATF2 の重要な研究対象である。現在の最終収束系 は local chromaticity correction[8]と呼ばれるビーム収差を 抑える技術を採用している。90 年代に FFTB で試験された global chromaticity correction 方式の最終収束系と比べ,長 い L^{*} (最終収束電磁石から衝突点までの距離)がとれる。 同じ L^{*} のビーム光学系を得る長さを比較すると,約1/6 に 短くできるコンパクトな設計である。また,エネルギーバ ンド幅が広く,ビームのハローが衝突点で広がりにくいと いう特徴をもった光学系である[9]。その反面,local chromaticity correction での収差の補正は global chromaticity correction の場合と違い,水平方向と垂直方向の収差の補正 を独立の電磁石でおこなうことが出来ない難しさがある。

ATF2 の最終収束ビームライン(以下, ATF2-FF と称す る)は,ILCと同程度の電磁石の設置精度や振動の許容値 となるように,ILC の最終収束ビームラインをビームエネ ルギーで250 GeV から1.3 GeV にスケールダウンしたもの である。従って, ATF2-FFを使って行われる各種のビーム 調整技術の開発は,ILC での最終収束系に必要とされる技 術へと直結する。ATF2 と ILC の最終収束ビームラインの optics を図 2 に示す。互いの構成が非常に似ていることを 理解していただけると思う。この ATF2 ビームラインに, ダンピングリングで得られる電子ビーム(垂直方向エミッ タンス10pm)を通すと,仮想衝突点で垂直方向35nmに 絞ったビームを得ることができるはずである。ATF のビー ムエネルギーは FFTB の 1/30 以下と低いにも関わらず, ATF2 で想定される電子ビームの大きさは FFTB と同程度 である。これはATFで実現されている世界トップレベルの 低エミッタンスビームにより初めて可能になる。

図 2: ILC の Beam Delivery System (250 GeV) と ATF2 ビーム ライン(1.3 GeV)のビーム光学系 枠線に囲まれたところは,それぞれのビームラインの最終収束系 を示す。

ATF2 計画では、その計画当初から共通の課題である ILC 最終収束系の技術開発に興味を持つ世界中の研究者が参加 して進められて来た。その際、アジア、ヨーロッパ、アメ リカの3地域が同程度の貢献をすることを目指して、設計、 製造および建設において分担を協議した。これから本格化 する ATF2 での開発研究も、引き続き国際的な協力分担体 制で進めていくことになる。そのため ATF2 における経験 は、ILC を実現する際に重要な国際的協力分担体制のモデ ルとして役立つものと期待されている。

3. ATF2 ビームラインの建設

ビームラインは全長約100m で,前半が既存 ATF シール ド室内となり、後半が新規に作られるシールド室内となる。 最終収束系は後半部分である。既存部分のビームラインも ATF2 のために改造される。そのため,ATF で継続中の開 発研究を長期間止めることなく,ビーム運転時間を最大限 維持するようにスケジュールを調整した。ATF のビーム運 転期間中は,既存の遮蔽シールド外側に新設する下流 FF 部の建設を進め,例年通り予定した夏期停止中に上流部の 改造と FF 部との接続を行うこととした。従って,建設期 間は 2007 年 6 月から 2008 年 11 月までに及んだ。

3.1 施設関係

元々,先端加速器試験棟(旧アセンブリホール)はトリ スタン加速器の建設準備のために作られたもので加速器設 置を想定していない。10年前のATF建設時でも,対応す る部分の床補強工事しか行っておらず,今回の最終収束系 に対応する部分は一般的なコンクリートの床構造のままで ある。従って,振動対策が施されているわけでもなく,重 量物である放射線防御用コンクリートブロックを設置する 点でも問題があった。ATF2 でのビーム技術開発研究では ナノメートルレベルでの電子ビームの制御を目標としてい る。ビームに伝わる振動を抑制するためにも,最初にこの 床の補強工事を行う必要があった。

床工事は、ATFのビーム運転に影響が出ないように 2007 年夏の停止期間(6~10月)に行われた。既存の床(15cm 厚鉄筋コンクリート)を撤去整地してから,ビームライン および放射線防御用シールドを設置する場所に合計38本の 鉄筋コンクリートの柱(直径70cm)を地下13mから形成 した。柱は地上付近で厚み1.2mの鉄筋部に接続され、それ らはコンクリートを流し一体化されている(写真1)。

床補強工事が 2007 年 10 月に完了したのを待って,放射 線防御用コンクリートブロックの設置を始めた。追加され る加速器室は長さ 50 m,高さ 3 m,幅 5.5 m(下流部は

写真1:ATF2 最終収束部の床補強工事

7.5m)の角トンネル状で,ブロックの厚みは1mである。 非常に多くのコンクリートブロックを必要とするため,横 壁を形成するブロックには KEK 東カウンターホールの FFAG (Fixed-Field Alternating Gradient)加速器に使われ ていたものなどを再利用し,経費と時間を節約した。新規 製作したブロックの納品を待って,すべてのシールド設置 が完了したのは 2008 年 4 月である。

3.2 電磁石システム

FF 部の電磁石設置は,天井を解放した状態で 2008 年 1 月から始められた(写真 2)。シールドが完成するまでの間 は,粗調整の範囲を確保した状態で架台や電磁石の設置を 進め,シールドが完成してから詳細なアライメント作業を 行う手順となった。

ATF2 ビームライン全体では四極電磁石 42 台,スキュー 四極電磁石 6 台,偏向電磁石 7 台,六極電磁石 5 台,ステ アリング電磁石 23 台が使用される。このうち,四極電磁石 24 台は ATF で使用しているものと同型を IHEP(中国)で 新規製作したもので,主に FF 部に配置されている。六極 電磁石 5 台と final doublet 部の四極電磁石 2 台は SLAC か ら提供されており,これらは FFTB で使用されていたもの を ATF2 用に改造したものである。さらに,FF 部の偏向電 磁石 3 台は SLAC 設計・発注の下で IHEP が製造したもの である。

FF 部におけるすべての四極電磁石および六極電磁石は, FFTB で使用されていたカム式ムーバーの上に設置されて いる(写真3)。このムーバーはSLACから運び込まれ,精 度100nm で位置(水平および垂直方向)の調整が可能であ り,CAMAC によりリモート制御される。ATF2 における 最終収束系のビーム軌道調整は,このFFTBムーバーを使

写真2:四極電磁石(最終収束部)の設置作業

写真3:最終収束ラインの四極電磁石構成

用し,四極電磁石の位置をずらすことで行う。そのため, ステアリング電磁石は,上流の取り出しビーム調整部には 設置されているが,下流の FF 部には設置されていない。 このようなムーバーを使ったビーム軌道調整方法もまた, ILC のためのビーム制御技術の確立に繋がるものと期待さ れている。

FF部の電磁石架台はコンクリートブロックを採用している。エポキシ系接着剤を混ぜたコンクリートを用いてこの ブロックは床と接合され,防振性能を上げるように工夫されている。

最終収束系の中でも仮想衝突点の直前に置かれる final doublet 部では、電磁石が振動すると仮想衝突点でのビーム 位置に与える影響が大きい。この電磁石の振動を抑えるこ とは、ATF2計画にとって重要な課題である。Final doublet の架台システムはLAPP(フランス)が担当した。CLIC用 に研究されていた防振架台を採用し、LAPP での振動試験 を経た後、2008年9月にビームライン上に設置された(写 真4)。設置後に、電磁石に冷却水を流した状態で振動試験 を行い、振動レベルは床に対して5nm以下と、ATF2の要 求を満たしていることを確認した。

写真4:設置された final doublet system 後方に見える垂直定盤の背面が仮想衝突点である。

FF 部の電磁石電源は SLAC が担当した(写真 5)。この 電源は high availability 機能を有する。これは 50 A の基本 出力ユニットを各電磁石につき必要台数+1 台を並列運転し, ユニットが一台故障しても残りで必要電流を瞬時に確保す るものである。電源の台数とユニットの推定故障率から見 て,ATF2 においてこの機能が作動する確率は低いが,ILC の場合は台数が非常に多く、ビーム停止によるルミノシティ への影響などを最小限に抑えるためにも,必要不可欠な技 術である。

写真5:設置作業中のATF2用電磁石電源

3.3 ビーム位置モニター

ILC の Main Linac および Beam Delivery System (BDS) におけるビーム位置モニターは、空洞型 BPM(cavity BPM) を想定している。特に,BDS では分解能100nm を要求し ており,cavity BPM 以外では実現が困難である。ATF2-FF においても要求分解能は100nm である。このため,ATF では cavity BPM の開発を続け[10],試作機を使ったビーム 試験では約15nm の分解能を達成した。

ATF2 上流部のビーム取り出し路では従来の strip-line 型 BPM を使用するが,下流の FF 部では前述の cavity BPM を 39 台配備する。FF 用の cavity BPM は,Cバンドの共 振周波数が採用され,設計を KEK が行い,Pohang Accelerator Laboratory, PAL (韓国)が製作を担当した。読み 出し回路は SLAC が設計製作し,読み出しのソフトウェア は Oxford および Royal Holloway University of London, RHUL (英国)が担当している。

仮想衝突点(ATF2-IP)直前の final doublet 付近ではビー ムサイズが大きく,そのため内径 40 mm のパイプに合うよ うに S バンドの cavity BPM が 4 台採用されている。この cavity BPMの製作はKyungpook National University, KNU (韓国)が担当した。読み出し回路は RHUL と KNU が担当 している。 一方,ATF2-IP でのビーム制御技術の開発研究では位置 分解能2nm が要求されている。この超高性能 cavity BPM の開発も ATF で行われてきた(写真 6)[11]。達成した分 解能は8.7 nm であり,これは実現されている世界最高分解 能である。今後もさらなる高性能化の追及が FF 部上流の テストエリアで行われるが,平行して現在の BPM を IP 近 傍に設置する予定である。

写真 6:世界最高分解能 8.7 nm の cavity BPM ATF ビームラインでの実験の様子である。

3.4 ビームサイズモニター

ATF2-IPにおいて絞り込まれたビームの測定には、FFTB で使われたレーザー干渉縞によるビームサイズモニター[7] を改良して使用する。ATF2-IP での目標である垂直方向の 大きさ 35 nm というビームサイズで感度が高くなるように, レーザーの波長をFFTBで使用された1064 nm から532 nm に変更した[12]。この装置の開発改良は東大が中心となり KEKと共同で担当している。SLACから戻されたレーザー 干渉計システムは,東大に移設されて改良および基礎開発 試験が行われ,2008 年 4 月に ATF2-IP 部に設置され,現場 での調整が進められている(写真 7)[13]。

写真7:レーザー干渉縞型ビームサイズモニター

このモニターは ATF2 のプログラムを遂行するために重 要なものであり,ビーム開発試験の進捗と共に改良発展し ていくことになる。

4. ビーム技術開発の展望

ATF2 ビームライン部は 2008 年 11 月に建設が完了した (写真 8)。放射線安全検査のために徐々にビーム強度を上 げながら試運転を行った結果,翌 2009 年 1 月付で施設完成 検査に合格となり,今後のナノメートルレベルのビーム技 術開発に向けてスタートを切ることができた。

写真 8:完成した ATF2 ビームライン(最終収束部)

先に述べたように,ATF2 ビームラインは,ホストであ る KEK の役割は当然として,電磁石システムやビームモ ニターなど多岐にわたる要素を世界中の大学・研究機関が 分担して実現してきた。これから本格化するナノメートル レベルでのビーム開発研究もこれまで以上に多数の研究者 が参加して行われる予定である。写真9は2008年12月15 日から18日までKEKでおこなわれた第7回ATF2 Project Meeting の集合写真である。会議には国内からは19名、海 外からは33名の参加者があり,ATF2に対する海外からの 関心の高さが現れている。

当初はビーム調整に必要となる cavity BPM やレーザー 干渉型ビームサイズモニターの立ち上げ調整を進めながら, 徐々にビームを絞ることを試みることになるであろう。ビー ム軌道調整でも四極電磁石をムーバーで移動させて行うな ど新たな試みが試験されていく。ILC の Beam Delivery Systemではビーム位置はすべてcavity BPMを使用し,ビー ム軌道調整はすべて電磁石ムーバーを使う計画であり, ATF2では貴重な経験を積むことになると考えられている。

ATF2 計画での Phase 1 の主題は, 35 nm の最小ビームサ イズの実現である。同時に FFTB で未解決であった理論値 と実測値の差異の解消,ビームサイズ調整技術の確立など, 多くの課題に取り組んで行くことになる。 ATF2 計画の Phase 2 では,安定なビーム位置制御の技術 確立が主眼である。トレイン内のバンチごとのビーム位置 を揃えるために高速フィードバックの技術開発があり,ATF では Oxford 大学により進められてきた。この技術開発は ATF2 でも継続され,実際に ATF2 でのビーム安定化への 展開を目指しており,ATF2 全体の開発研究に大きく貢献 をするものと期待されている。

5. まとめ

先端加速器試験装置(ATF)では,ILC など将来の加速 器で必要とされる技術開発を行っている。今回,ATFの低 エミッタンスビームを利用して ILC の最終収束系の技術開 発を行う(ATF2 計画)ために,新たなビームラインを建 設した。ATF2 計画ではビームラインの設計をはじめ,各 種装置の製造や調整も国際的な協力分担体制で進められて いる。計画の目標は仮想衝突点において垂直方向35nmの ビームを実現し,その安定な維持のために必要な技術の開 発研究を行うことにある。今後,ビームモニター系の整備 調整を行い,ナノメートルレベルのビーム技術開発を開始 する。

参考文献

- Baseline Configuration Document, http://linearcollider.org/wiki/doku.php
- [2] ATF2 proposal, KEK-Report 2005-2.
- [3] 佐貫智行「ATF2 プロジェクト」 高エネルギーニュース, 24-4 244 (2006).
- [4] ATF International Collaboration, http://atf.kek.jp/
- [5] 早野仁司「超伝導 RF 試験設備 STF」
 高エネルギーニュース, 25-3 137 (2007).
- [6] V. Balakin et al., Phys. Rev. Lett., 74 2479 (1995).
- [7] T. Shintake, Nucl. Instru. Meth., A311 455 (1992).
- [8] P. Raimondi and A. Seryi, Phys. Rev. Lett., 86 3779 (2001).
- [9] 奥木敏行「最終収束系の設計」OHO'06 13 (2006).
- [10] 中村友哉ほか,「ATF2 最終収束系のための空洞型ビー ム位置モニターの開発状況」加速器学会 2007, WP35.
- [11] Y. Inoue *et al.*, Phys. Rev. ST Accel. Beams, 11, 062801 (2008).
- [12] T. Suehara, Doctor thesis, University of Tokyo (2008).
- [13] 山中隆志,修士論文, University of Tokyo (2009).

写真 9:第7回 ATF2 Project Meeting, KEK, 2008/12/15