研究紹介

SuperKEKB 計画

高エネルギー加速器研究機構 加速器研究施設

飛山真理

on behalf of KEKB 加速器グループ makoto.tobiyama@kek.jp

2009 年2 月6日

1. はじめに

KEKB加速器は強力な競争相手であった SLACの PEP-II 加速器が 2008 年 4 月に運転を終了した後も運転を継続し, Belle 検出器に世界最高ルミノシティを供給し続けている。 この KEKB 加速器を大幅に改造し,最高ルミノシティを現 在の約 30 倍に増加させ,フレーバー物理を強力に推進する SuperKEKB 計画の検討が急ピッチで進んでいる。ここで は,この SuperKEKB 加速器検討の現状を,現在進行して いるハードウエアの開発研究を中心に紹介したい。

最初に衝突型加速器の性能を表す指標であるルミノシ ティについて参考文献[1]に従って紹介し,これを劇的に向 上させる方法を概説する。次に,本 SuperKEKB 計画の加 速器ビームのパラメータを示し 最後に現在進んでいるハー ドウエア開発の例として,1)真空チェンバー開発,2)ビー ムモニターシステムおよびフィードバック機器開発を中心 に紹介する。

2. 衝突型加速器のルミノシティ

ある物理現象が一秒間に起こる頻度を R,1 組の粒子対 が衝突してその物理現象を起こす反応の断面積を σ とする と, ルミノシティ L は,

$$R = L\sigma$$

という関係で表せる。現 KEKB 加速器のルミノシティは $1.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 辺りなので,もしも興味のある物理現象の 反応断面積が1nb(1barn = 10^{-24} cm^2)程度だとすると,1 秒間に約16回の現象が起きることになる。加速器の年間運 転時間を2000時間とすると,1年間で約1億回の現象を起 こすことができることになる。もしも対象の物理現象の反 応断面積がもっと小さい,稀にしか起きない現象であり, さらにその現象について十分な統計量を確保したければ, ルミノシティを大幅に上げるか,あるいは延々と何十年に もわたって実験を続ける必要がある。

衝突型加速器のビームはバンチと呼ばれる塊を形成して おり,あるバンチと他のバンチがお互いに反対方向に進ん で衝突したとする。両方のバンチは水平,鉛直方向に同じ ようにガウス分布をしていて,ビームサイズが σ_x^* , σ_y^* であらわせるとする。それぞれのバンチ内の粒子数が N_+ , N_- で,一秒間に衝突する回数をfとすると,ルミノシティは,

$$L = \frac{N_+ N_- f}{4\pi \sigma_r^* \sigma_u^*}$$

という形で表される。これから,ルミノシティを高くする ためにはさしあたって,

- バンチ当たりの粒子数(N₊, N₋)を大きくする。つまり,バンチ電流を大きくする,
- 衝突頻度(f)を大きくする。つまり,バンチ数を増やす,あるいは高周波加速周波数を上げる,

という方法を思いつくが,もちろん実際はいずれもそう簡 単にはいかない。

電子陽電子衝突型加速器の場合,たとえば電子ビームは 衝突点において反対方向からやってくる陽電子ビームとの クーロン相互作用により運動に大きな影響を受ける。この ようにビームの衝突により起こる効果のことをビーム・ビー ム相互作用と呼ぶ。この現象は非線形で,二次元あるいは 三次元で取り扱う必要があり,またビーム同士がお互いに 影響を受け合うという意味で集団的効果,つまり多粒子系 として扱う必要があり,大変奥が深い。

ビーム・ビーム効果の目安として,ビーム・ビームチュー ンシフト(ビーム・ビームパラメータ)という量を用いる。 陽電子と電子との衝突時に働く力は引力であり,お互いに 引き寄せる(絞る)ように働く。このためビーム・ビームに よる力は近似的には,リング内のある一点に薄いレンズを おいたように表せ,それぞれのビームの*x*,*y*方向のビーム・ ビームチューンシフトは,

$$\begin{aligned} \xi_{x\pm} &= \frac{r_e N_{\mp} \beta_x^*}{2\pi \gamma_{\pm} \sigma_x^* (\sigma_x^* + \sigma_y^*)} \\ \xi_{y\pm} &= \frac{r_e N_{\mp} \beta_y^*}{2\pi \gamma_{\pm} \sigma_y^* (\sigma_x^* + \sigma_y^*)} \end{aligned}$$

のように表される。ここで, + は陽電子を, - は電子を表し, r_e は電子の古典半径, β^* は衝突点のベータトロン関数, γ はそれぞれのビームのローレンツ因子である。これから

見ると,あるビームのビーム・ビームチューンシフトは相手 のビームのバンチ強度に比例し,自分のビームのエネルギー に反比例する。またルミノシティについては,

$$L \propto N_{+}N_{-} \propto \xi_{+}\xi_{-} \le \frac{(\xi_{+} + \xi_{-})^{2}}{4} = \xi_{\max}^{2}$$

の関係から,電子と陽電子のビーム・ビームチューンシフト が等しいとき,つまり,

$$\frac{N_+}{\gamma_-} = \frac{N_-}{\gamma_+}$$

の関係(エネルギー・トランスペアレンシー)が成り立つと きが最大となる(あくまで近似なので実際には成り立たな いことも多い)。では,このエネルギー・トランスペアレン シー状態で(しかも両リングのビームサイズも,ベータト ロン関数も等しい状態),ルミノシティを最大にする条件を さがすことにする。この状態では電子と陽電子のビーム・ ビームチューンシフトは等しくなり,x-y カップリングを $r = \sigma_y^* / \sigma_x^*$ とおくと($\sigma^* = \sqrt{\varepsilon\beta^*}$, $\eta^* = 0$ を仮定),

$$\frac{\xi_{y,\max}}{\xi_{x,\max}}r = \frac{\beta_y}{\beta_x^*} = \frac{\varepsilon}{\varepsilon}$$

が満たされるときとなる。さらに ,x方向と y方向のビーム・ ビームチューンシフトが等しくなると仮定すると,結局,

$$r = \frac{\beta_y^*}{\beta_x^*} = \frac{\varepsilon_y}{\varepsilon_x}$$

というとき(optimum coupling という), ルミノシティが最 大となる。この rを使ってルミノシティは,

$$L = \frac{\gamma_{\pm}}{2er_e} (1+r) \frac{eN_{\pm}f\xi}{\beta_y^*}$$

と書ける。結局, ビーム・ビームパラメータまで考慮に入れるとルミノシティを高くするためには,

- ビーム電流(I = eNf)を大きくする、
- 衝突点の鉛直方向ベータトロン関数(β_{u}^{*})を小さくする,
- ビーム・ビームチューンシフトの限界をなるべく高くする、
- ビームエネルギーを大きくする、
- カップリング(r)を大きくする、

という手段が必要となる。このうち,まずビームエネルギー については必要とする物理現象で決まるので変えられない。 また,カップリングについては,通常の蓄積リングは y方 向のエミッタンスが x 方向に比べて非常に小さいため,た とえばベータトロンチューンを共鳴線にのせて y 方向にエ ミッタンスを回すことなどは可能ではあるが,このまま太 らせたのではダメで衝突点で y 方向のみならず x 方向も大 幅に絞る必要があり,軌道光学上の困難がある(実際,round beam collision というアイディアは昔からあるが,低エネル ギーマシン (VEPP2000)の例しかない)。そこで,残りの 項目で勝負することになる。 電流を増加させると,放射光パワーも比例して増加する のでその分 RF システム(空洞,パワー源)を増強する必 要があるし放射光パワーを受け取る真空チェンバー側も, 単純に熱を処理するだけでも大変だが,それに加えてビー ムからのより強力な高周波にも耐えられる真空部品を用意 しなければならない。これらは加速器の建設コストに直接 影響するし,将来にわたって運転コスト(電気代)も大き く上昇させる。また,電流増加により,より低いインピー ダンス源でもビーム不安定が起きるようになるので,バン チフィードバックによるビームの安定化への負荷が増える ことになる。フィードバックが抑えることが出来るのは重 心振動だけなので,より高次のバンチ内不安定現象がおき るようだと手の打ちようがなく,不安定が起きる電流値未 満に電流が制限され,ルミノシティが制限されてしまう。

次に衝突点の鉛直方向ベータトロン関数 β_{y}^{*} を出来るだけ 小さく絞ることを考える(optimum coupling の条件からは β_{x}^{*} も当然絞る必要がある)。衝突点で両ビーム両方向のベータ トロン関数が極小値を持ち,かつそれを最小にするため, 衝突点直近に非常に強力な QD 磁石(鉛直方向に収束,水 平方向に発散する磁石),その外側にある程度強力な QF 磁 石(水平方向に収束)をおき, β_{y}^{*} を強烈に(数mm まで) 絞り, β_{x}^{*} についてはある程度(数十 cm 程度)絞るよう twiss パラメータのマッチングをとることが可能である。この場 合,衝突点では確かに β_{y} は小さいが,衝突点から離れるに 従い急激に増大し,衝突点からの距離を ℓ とすると,

$$\beta \approx \frac{\ell^2}{\beta^*}$$

のようになる。たとえば $\beta_y^* = 7 \, \text{mm} \, \text{とすると}, 2 \, \text{m} \, \text{離れた}$ ところでは $\beta_y > 500 \, \text{m}$ になり, 普通のセルと比ベビームサ イズ, COD が数倍以上になる。これは,真空容器のサイズ にも磁石のボア径にも影響し,逆にこの口径によりビーム 寿命,入射効率などにも大きな影響を及ぼす。このため, 出来るだけ最終収束磁石群を衝突点に近づけたいが,検出 器との物理的干渉,また衝突によりエネルギーを失った粒 子がこの磁石によって大きく曲げられ検出器に入ってしま う問題などがあり,加速器の都合だけでは決められない。

さらに,実際のビームは有限のバンチ長を持っている。 ゼロ電流のバンチ長は,リングのエネルギー幅,momentum compaction factor α (運動量の違う粒子がどれだけ余計な 長さリングを回るかを表す量で,周長を C,粒子の運動量 をPとすると,

$$\frac{\Delta C}{C} = \alpha \frac{\Delta P}{P}$$

で表される)と高周波加速電圧で決まり,ゼロでない電流 ではさらにリング内インピーダンスの影響で伸びたり縮ん だりするが,このバンチ長が衝突点の β_y^* より長くなると, 衝突中にバンチの頭,あるいは尻尾は β_u の大きなところに いることになるので,ルミノシティで損をする。この効果 を hourglass (砂時計) effect と呼び,絞りすぎるとトクを しないどころか絞らないときよりもルミノシティを損する。 このため,バンチ長は β_y^* 程度まで短くするか,あるいは β_y を絞るのはバンチ長程度までであきらめることになる。バ ンチ長を短くすると,ビームからくる高周波はバンチ長の 逆数程度の周波数のところまで伸びているので,より高周 波成分が増え,真空容器でのパラシティックロスが増える (つまり,高周波加速装置の負担,電力負担が増える)と同 時に,バンチ長が長かったときに効かなかった高周波側の リングインピーダンスもビームに影響するようになり,思 わぬ発熱,故障,不安定などが発生することがある。さら に,リングのインピーダンスが大きいと,せっかく短くし たバンチがバンチ電流とともに伸びて(安定化する方向) ルミノシティ低下につながることもあり,容易ではない。

衝突点で小さくベータトロン関数を絞ることによるリン グ光学への影響として,強力な収束力が集中することによ リ,衝突点近傍(IR)で大きな局所的な色収差が生じるこ とも問題となる。この色収差を補正しないと,ビームを安 定に蓄積できなくなるので,通常六極磁石を使い補正する ことになるが,六極磁石の選択によってはダイナミック・ アパーチャが小さくなり,ビーム寿命が短くなったり,入 射が出来なくなったりする。このため,衝突点付近に局所 的に六極磁石を配置して衝突点で発生した色収差を出来る だけ近くで消す工夫をしたり,アーク部の六極磁石を入れ 子にせずに-I 変換で結ぶなどの工夫がされるが,なにせ強 烈な非線形の話なので,最後は加速器で実際に試してみな いとどうなるか分からないことが多い。

さて,このような各種工夫をして,実際にルミノシティ がどうなるかについては,(1)果たしてその optics でちゃ んとビームが回るのか(衝突点が成立するか,十分なダイ ナミックアパーチャがあるのか)という点と,(2)前述の ビーム・ビームパラメータがどうなるか,つまり多体系の非 線形衝突現象がどうなるか,といういずれも数値シミュレー ションを行って検討する必要がある。シミュレーションで 大丈夫でも現実はダメなことは多いが,シミュレーション でダメなものが現実で復活することは通常はない。

3. 次世代高ルミノシティマシン

3.1 SuperKEKB

ルミノシティを大幅に向上させる方法の一つは,前述の 向上策を比較的素直に適応する方法である。つまり,電流 をがんばって上げ,衝突点のベータトロン関数は現実的に 可能な限り絞り,バンチ長も可能な限り短くする,といっ たものであり,本 SuperKEKB 計画は基本的にこの方法を 採用する。さらに crab 交差を採用することにより有限角交 差の場合に比べ,最大で4倍程度ルミノシティが向上する ことがシミュレーションにより示されているので,クラブ 空洞付き衝突が基本である。検討においては,現行 KEKB リングの資産を出来るだけ再利用して,改造に要するコス ト,時間を切り詰める,という厳しい条件が課せられてお り,たとえばアーク部の磁石は配置も含めて手を付けない などの条件で最適化することになる。SuperKEKB の(執 筆時点での)パラメータを表1に示す。

表 1.	SuperKEKB	のパラメータ
------	-----------	--------

Parameter	LER/HER	Unit	
Emittaneo	ε	24/18	nm
Emittance	ε_y	0.24/0.09	nm
Data at ID	β_x^*	200/200	$\mathbf{m}\mathbf{m}$
Beta at IP	β_y^*	3/6	$\mathbf{m}\mathbf{m}$
Bunch length	σ_z	5/3	$\mathbf{m}\mathbf{m}$
Transverse damping time	τ_x	60/40	\mathbf{ms}
Betatron/synchrotron tune	$\nu_x / \nu_y / \nu_s$.505/.5905/.025	
Beam Energy	E_{+} / E_{-}	3.5/8.0	${\rm GeV}$
Beam current	I_{+} / I_{-}	9.4/4.1	А
Number of bunches	N_{b}	5018	
Crossing angle	$2\phi_x$	$30 \rightarrow 0$	mrad
Been been peremeter	ξ_x	0.182/0.138	
Deam-beam parameter	ξ_y	0.295/0.513	
Luminosity reduction	$R_{_L}$	0.86	
Luminosity	L	$5.3 imes10^{35}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$

現在の KEKB と比べると,大まかに衝突点のベータトロン 関数で2倍強,ビーム・ビームパラメータで4倍半,ビーム 電流で4倍弱がんばることで,ルミノシティが約30倍にな る,という計算になる。図1に最新のビーム・ビーム計算の 結果(横軸 turn数,縦軸ルミノシティ)を示す。

図1 Strong-strong シミュレーションによる SuperKEKB の ルミノシティ LoI 時でのパラメータ[2]と比べ,各種の検討が進んだ結 果,後退した部分(たとえば LER のバンチ長および衝突点 の β_y^* :これは coherent synchrotron radiation のシミュレー ションで短くはできないことが分かったため),よりよいパ ラメータが見つかった部分などがあり,全体的にはルミノ シティは微増,という形になっている。

この方式は基本的には正統的な力任せのルミノシティ向 上策であり,前述のようにリングのハードウエア,特に真 空チェンバー,高周波加速系,モニター系(フィードバッ ク系)の開発への負荷が非常に大きい。しかしながら、こ れらについては(少なくともある程度のコストおよび時間 をかければ)現行の技術の延長上の解決可能なものがほと んどであり, optics を含め現時点で解がないという話では なく,現時点で不明あるいは怪しい部分でも,運転開始後 の study, 改善で十分に対処可能な部分も多いと考えられ, 実現性は極めて高いといえる。しかしながら、よりルミノ シティを上げる,また,改造コスト,運転コストを下げる ため,たとえば衝突点をより絞る,バンチ長が長くてもル ミノシティやビーム寿命が下がらないように, crab 空洞と 六極磁石を組み合わせる(traveling waist)方式などの検討, 衝突点の検出器配置,検出器ノイズを含めた最適化,改造 開始に向けすべてのパラーメータの最適化の検討が、加速 器および物理側の密接な協力のもと現在急ピッチで進んで いる。

3.2 Crab waist 方式

イタリア・フラスカティ研究所の P. Raimondi が提唱した,もう一つの有力なルミノシティ向上法が crab waist 方式である[3]。これは,

- 両リングのエミッタンスを現状より大幅に下げる(ほとんどILCダンピングリング並),
- 交差アングルを大きくとり、衝突点からちょうどよい位相の場所においた強力な六極磁石ペアにより、鉛直方向のベータトロン関数の極小値をバンチ長に沿って進行方向にずらすことにより、長いバンチ長でも hourglass 効果や不要なビーム・ビーム効果に邪魔されずに高いルミノシティが実現される(crab waist 法),

というものである。表 2 にイタリアの SuperB のパラメー タの例を示す[4]。

もしもこの方法がうまくいくなら,少なくともハードウ エアへの負荷が大幅に減り,ハードウエアに関しての開発 が不要となり(電流も低くバンチ長も長いので),かつ運転 コストも SuperKEKB に比べて大幅に安いなど(筆者のよ うなハードウエア屋の立場からは,なにせ仕事が楽になる し,心配の種も少ないため)極めて魅力的な方式である。

表 2.	イタリア	SuperB	と SuperKEKB	のパラメー	タの比較
------	------	--------	-------------	-------	------

Parameter	Unit	SuperB	SuperKEKB
Energy	${\rm GeV}$	4 / 7	3.5/8
Luminosity	$10^{36} { m cm}^{-2} { m s}^{-1}$	1	0.53
Beam currents	А	1.9/1.9	9.4/4.1
β_y^*	$\mathbf{m}\mathbf{m}$	0.22	6/3
β_x^*	$^{\mathrm{cm}}$	3.5 / 2.0	20
ε_y	$_{\rm pm}$	7/4	240/90
σ_z	$\mathbf{m}\mathbf{m}$	6/6	5.5/3
Crossing angle	mrad	48	30
RF power	MW	$20\sim 25$	$80 \sim 90$

Crab waist 方式自体はフラスカティ研究所の DAΦNE リ ングを使った検証(DAΦNE upgrade)が精力的に行われ, 条件付きながらほぼ目標通りのルミノシティが達成出来て いる[5]。(条件付き,という意味は,達成したルミノシティ 自身はKEKBリングの現状の値と比べて決して満足いく値 ではないからである。2ページ前のルミノシティを決定す る式で見ると,ルミノシティは電流,ベータトロン関数, ビーム・ビームパラメータが同じ程度ならば,ビームエネル ギー(γ)に比例する。DAΦNE upgrade のルミノシティ 目標値は 5×10^{32} cm⁻²s⁻¹であり,KEKB とのエネルギー比 が約 10 倍,という点から見るとかなり低い(少なくとも 1×10^{33} cm⁻²s⁻¹位は出ても罰は当たらない)。つまり,いさ さか志(目標)が低すぎ=ビーム・ビームパラメータが低す ぎ,はしないだろうか,という気がするからである。)

SuperB 加速器(および SuperKEKB 加速器)の構成では, crab waist 用六極磁石が作り出す強力な非線形効果を-I と なるように配置したとしても,衝突点近傍のもつ非線形性 の影響により,うまく打ち消すことは出来ず,ダイナミッ ク・アパーチャがきわめて狭くなってしまい,使える(ちゃ んと回る)pptics 自体を未だ見つけることが出来ていない。 また現技術で実現可能なハードウエア(磁石)で必要なだ けの低ベータ衝突点が実現できるかどうか,特に(β_g もす ごいが) β_z を絞れる衝突点が実現可能か不明であり,また それらすべてがうまくいったとしてもビーム寿命がきわめ て短く,非常に強力な入射器で入射し続けなければならな いといった(ILC 並の衝突点なので当然)問題が山積して おり,解決策の目処さえ立っていないものも多い。具体的 な検討が進んでいる SuperKEKB と同じ土俵で議論できる 段階まで到達していないのでは,という印象は否めない。

最近の検討傾向では、衝突点などのパラメータをゆるめ, バンチ長も短くし、蓄積電流も増加する方向の検討も始まっ ているようで,より現実的なパラメータへシフトしてゆく ものと思われる。SuperKEKB でも,前述のようにもしも 可能ならばより蓄積電流が少なくバンチ長が長いオプショ ンに近づく検討も行われており,よい着地点があることを 期待している。

4. SuperKEKB に向けての開発研究

SuperKEKB の設計,検討については,現在衝突点を最 重点的に進めており,今まで示したパラメータも日進月歩 で変化している(かならずしもルミノシティがよくなって いくばかりではない)。そのため,現時点で衝突点周りの紹 介をここでするのはあまり意味がないと思われる。そこで, 現時点でよく検討されていて,あまり変化しないと思われ る真空チェンバー,および筆者のフィールドであるビーム モニタシステムについて紹介したいと思う。

4.1 真空チェンバーに関する開発研究

SuperKEKB では HER, LER とも KEKB リングより大 幅に蓄積電流が増え,バンチ長は短くなる。それに従って 陽電子リングの光電子不安定性,電子リングのイオン不安 定も非常に強くなるため,真空チェンバー側での十分な対 策が必須になる。また,真空容器から来るブロードバンド インピーダンス(大きいとバンチ伸長現象によりルミノシ ティが落ちる),パラシティックロス(余計に RF パワーを 浪費するだけでなく,真空容器,コンポーネントの破壊に もつながる)についても,現 KEKB よりも,より厳しい管 理が必要となってくる。このため,以下の開発が進んでい る。

 アーク部の真空チェンバーは HER, LER とも アンテチェンバー型

アンテチェンバーで通常のビームパイプ壁より遠方で放 射光を当てることは、極めて強力な放射光を処理するため に必要(発光点からずっと遠くで壁に当てるため,放射光 の鉛直広がり及び水平広がりの効果で壁での入熱の面密度 が下がり、なんとか従来方法での冷却が可能となる)であ るとともに,アンテチェンバー内に分布型ポンプを置くこ とで真空の圧力が平均化する利点 (真空度が悪い場所が少 なくなる), フランジ, ベローズなどを保護するための放射 光マスクやイオンポンプなどのポンプスロットがアンテチェ ンバー側に設置されるため、真空チェンバーのインピーダ ンスが大幅に下がるなど多くののメリットがある。特にLER については,放射光の直撃面からの光電子がビームまで届 きにくくなるため,電子雲不安定を抑制する大きなご利益 があり, HER についても真空度が悪いところが減るため, fast イオン不安定が起きにくくなるメリットがある。開発 中のLERアーク部用アンテチェンバーの写真を図2に示す。

図 2. 開発中のアーク部用真空チェンバー(LER用) チェンバー内径は 90 mm で,現行チェンバーより 4 mm ほど小さ い。リング内側のスロットには分布型の NEG(非蒸発ゲッターポ ンプ)が入り,真空度向上に大きく寄与する。

• 大電流, 強力なビーム電磁場に耐えうる真空部品の開発

ビームが真空チェンバー中を走行することにより,真空 チェンバー内表面にはビームからの電磁場により強力な壁 電流が流れる。また,真空チェンバー内に構造(段差など) があると,それにより乱されたビーム電磁場から放出され た電磁場(wake field)がチェンバー内を伝搬してくる。こ れらの電磁場は、バンチ長の逆数程度までの高周波まで(数 + GHz)の成分を持ち、バンチ電流の自乗に比例するパワー を持っているので,大電流,短バンチ長のマシンでは,ま ず真空部品がこれらの高周波に耐え, 壊れないことが必須 となる。また,自分が壊れないだけでなく,そこでビーム エネルギーを無駄に失わないように ,HOM を貯めないよう にすることがリング全体のインピーダンスを下げることに も必要である。現状で,真空チェンバーを接続するのに必 要なベローズなどの開発がKEKBリングを使って進んでお り, すでに実用段階にある。インピーダンス管理について も, 並列計算環境を用いた三次元電磁界計算が精力的に進 められている。同時に,大きな影響があると考えられる可 動マスクなどについては、試作品を KEKB リングにインス トールして精力的な試験が行われている。

真空チェンバーの表面処理(LER)

陽電子リング(LER)では,放射光により発生した光電 子がビームと相互作用し,バンチ結合不安定,バンチ内振 動(head-tail 振動)などを引き起こす電子雲不安定性が大 きな問題となる。これを抑制するためアンテチェンバーを 使用すれば直撃放射光から放出される光電子を大幅に減ら すことは可能だが,それでも反射光,迷光など直撃光の1/10 ほどの光はチェンバー内面にほぼ一様に当たり,そこから 光電子が放出される。この電子がビームにより加速され, 再びチェンバーに当たるとき,当該電子エネルギーの二次 電子放出率 δ_{max} が 1 より大きいと,電子数が増幅され,バ ンチ電流が大きい領域では電子雲不安定が起きてしまう。 これを回避するため,真空チェンバー内表面処理を行うこ とにより,二次電子放出率を下げる研究が進んでいる。現 在のところ,表面に TiN をコートすることにより, $\delta_{max} < 1$ が達成出来る見通しが立っている。図 3 に真空チェンバー に TiN コーティングをしている最中の放電の様子を下側 ビューポートから見たものを示す。この処理を行ったチェ ンバーを実際に KEKB リングにインストールし,電子数が $1/2 \sim 1/3$ に減少することが確認されている。

図 3. 真空チェンバー内面を TiN コートしている様子 中心の黒丸に見える部分がチタンカソードである。

• 偏向電磁石部で電子雲密度を下げる 特殊チェンバーの開発

アーク部の直線部(強い磁場がない場所)では,チェン バー外から弱いソレノイド磁場を加えることにより,今ま で述べた対策を併用すれば電子雲不安定はほぼ抑制できる。 しかしながら,偏向電磁石内では,強力な偏向電磁石磁場 により電子雲が支配され,磁力線に沿って上下方向に電子 雲がトラップされビームと相互作用すると考えられる(た とえソレノイド磁場があっても,偏向電磁石磁場に比べて 無視できる程度なので,電子雲を抑えることは出来ない)。 このため,偏向電磁石内では,さらに積極的に電子雲を減 らす,あるいは出来た電子雲を吸収する,といった対策が 必要となると考えられている。現在,有力な手段として1) 偏向電磁石チェンバー内上(あるいは下)面に電極を設置 して,電場をかけることにより電子雲を吸収する,2)上(あ るいは下)内面を深い溝(groove)がある構造とし,構造 的に二次電子が発生しにくいものにする、という2案のR&D が KEKB-LER で実際のビームを使って進められている。

また, CesrTA 加速器においても, 日米科学技術協力のもと, 電子雲不安定性に関する実験が進められている[6]。図

4 に電子雲吸収用ストリップライン電極の写真を,図5 に groove 付きチェンバーの写真を示す。LER ビームを使って 電子数を測定した結果によると、単純に表面をTiNコート しただけで電子数は $1/2 \sim 1/3$ になり、groove にするとさ らに $1/5 \sim 1/10$ になり、電極にするとそのさらに 1/10 に なる、という結果が得られている。

真空チェンバーについては,少なくともアーク部は改造 のための休止期間中にすべて交換する必要があるため,限 られた期間ですべてのチェンバーを製造し,現チェンバー を撤去し,新チェンバーを設置するという必要がある。ス ケジュール的にも予算的にも極めて大変で重要な部分であ り,本 SuperKEKB 計画の初期性能を決定する鍵を握って いるともいえる。

図4 電子雲吸収用ストリップライン電極 ステンレス真空チェンバー表面にセラミックスを溶射し(0.2mm), その上にタングステンの電極を溶射(0.1mm)している。

図 5 Groove チェンバー 材質はステンレスで表面に TiN コーティングがされている。この チェンバーは,日米科学技術協力事業のもと,SLAC で製作され, KEKB に設置されてビームテストが行なわれた。

4.2 ビームモニター・フィードバック開発

極限にまで最適化された加速器のデザイン性能を,現実 の(ランダムなエラー源を抱える)加速器でデザイン通り, あるいは出来るだけデザインに近く発揮させるためには, 実際のビームからの情報を元に各種のエラーソースを解析 して補正する(ビームに聞く)作業の繰り返しが欠かせな い。そこで,ビームを測定するビームモニターに求められ る性能も,自然厳しいものになる。

• ビーム位置モニター電極開発

前述のように,アーク部の真空チェンバーはすべてアン テチェンバーになる。また,バンチ長も短くなり,全電流 も増える。対策として,1)電極サイズを小型化することで, ビームから侵入するパワー,ビームとの結合インピーダン スを下げ,電極自身のtrapped modeに対しても低減化の対 策をする,2)高周波応答がよいフィードスルーを採用し, ビーム信号の高周波化に対応する,3)製造コスト削減およ びメインテナンス性を向上するためフランジ結合型の電極 にする,という3点を基本に開発を進めている。電極の応 答,trapped mode,インピーダンスについても,三次元電 磁界計算による検討を進めている。図6にKEKB日光直線 部に試験的にインストールされた位置モニターチェンバー の写真を示す。

図 6 日光直線部に設置されたアンテチェンバー用 ビーム位置モニター

• ビーム位置検出回路開発

真空チェンバーがアンテチェンバーとなったため,真空 チェンバーの中をビームからの電磁波が導波管モードで伝 搬するカットオフ周波数が下がり,1GHz以下になる。こ のため,KEKB で使用してきたビームの RF 二逓倍成分 (1GHz)を検波する位置検出回路は使用出来なくなるので, 新たに現在の回路技術のもと,509 MHz を検出するビーム 位置検出回路の開発を行っている。KEKB 開発時と比べて エレクトロニクス,特に DSP (Digital Signal Processor: 超高速の[浮動小数点の]乗算器),FPGA (Field Programmable Gate Array:書き換え可能な高速高密度ロジック素 子)の進歩が大きく,デジタル信号処理系に関しては遙か に高速に,高精度に信号処理を行うことが出来るようになっ たが,高周波信号処理部に関しては,回路の性能を決めて しまう部分でもあり,依然大変やっかいな場所であること は変わりなく,素子の選択を含めた困難な開発が続いてい る。

また,SuperKEKBでは,軌道光学測定のため,現KEKB よりもより時間領域での位置信号測定(turn-by-turn 位置 モニター)が必要になるといわれている。特に,大電流ビー ムを蓄積したまま、特定の衝突していないバンチだけを使っ てビーム位置情報(位置,ベータトロン位相の進み)を測 定することが実際の大電流で衝突時の軌道光学測定,補正 のために要請されている。このため,バンチトレインの中 から特定のバンチ信号だけを切り出す高速信号ゲート回路 (汎用と特殊測定用の超高速版の2種類),その信号からビー ムの位置を周回毎に測定する turn-by-turn 測定回路,特定 のバンチだけをベータトロン周波数で励振する励振回路の 開発が進んでいる。図7に超高速ゲート回路により切り出 されたボタン電極信号の例を示す。

図 7 バンチトレイン信号(上側トレース)とゲート回路により切 り出された信号(下側) バンチ間隔は2ns である。

• X線を用いたビームサイズ測定モニタ開発

KEKB リングでは放射光の可視光成分をダブルスリット 干渉計で測定することで,水平,鉛直方向のビームサイズ をリアルタイムに正確に測定することが可能となり,ルミ ノシティチューニングに大きく寄与した。SuperKEKB で も干渉計は鉛直方向エミッタンスが非常に小さくならない 限り依然有効であるが,これに加えて,放射光のX線領域 を用いてビームサイズを直接,しかも将来的にはバンチ毎 に測定出来る"coded aperture mask"を使ったサイズモニ ター開発を日米科学協力事業のもとで進めている[6]。現在, 日本側で製作した X線マスクを CesrTA 加速器の X線ビー ムラインに設置して,超低エミッタンスビームの測定実験 が行われている。また,読み取り系に関しては,ハワイ大 学のグループと協力して開発が進められている。

• 次世代バンチフィードバックシステムの開発

現KEKBリングでもバンチ結合不安定が予想外に強力で, 横方向(水平,鉛直方向)に関しては個別バンチフィード バックシステムなしでは非常に少ないビーム電流しか (<50mA)蓄積できないが,SuperKEKBにおいては,リ ングのインピーダンスがより削減できたとしても,より大 電流,短バンチ長のため,横方向のみならず,進行方向に もバンチ結合ビーム不安定が発生すると推定されている。 また,バンチ間隔に関しても,2ns間隔が基本となるため, 現行システムより時間的にキレがよいことが必要となる。 さらに,フィードバックシステム自体がビームにもたらす ノイズ成分が衝突時のビームサイズ,特に鉛直方向のビー ムサイズに悪影響をもたらす現象が明らかになりつつある こともあり,フィードバックシステムへの要請はKEKBよ りも遙かに厳しいものがある。

このような次世代フィードバックシステムへの要請を満 たすため, 日米科学技術協力事業のもと, SLAC のフィー ドバックグループと共同で次世代バンチフィードバックシ ステムの開発を進めてきた[6]。はじめに高速 FPGA を使っ たバンチフィードバック用汎用デジタル信号処理回路シス テムの開発を行った。ここで開発された iGp は,(1) ほと んどすべてのハーモニックナンバーの加速器(最大周波数 550 MHz 以下)で使用可能で(奇数ハーモニックナンバー: たとえば CesrTA でも使用実績がある),(2) 一枚の基板上 に ADC, FPGA, DAC およびデータ蓄積用のメモリー(8 MB) が載った all-in-one システムで,(3) 最大 16 tap FIR (finite impulse response) フィルターまで実現可能で,(4) 周回周波数に比べてずっと遅いシンクロトロン振動に対応 するため,進行方向フィードバック用のダウンサンプリン グ(間引き)機能を含み、(5)フィードバック動作に影響 を及ぼさずにデータ取得が可能で,またトリガーに合わせ たフィードバック係数の瞬時入れ替えが可能(なので,あ る時間までフィードバックを OFF にして,その後 ON にす る grow-damp 実験が可能)な, 汎用フィードバックフィル ターである。このシステムは KEKB をはじめ, KEK-PF, DA NE, LBNL-ALS で進行方向, 横方向フィードバック で実用運転されており, BEPC-II, CesrTA などでも導入の ための試験実験が行われ,十分機能することが証明されて いる。図 8 に iGp の基板 (SLAC 版) の写真を示す。

図 8. iGp 基板の写真

この iGp を使用することで,不安定を抑制できるだけで なく,grow-damp 実験により不安定のモード特定が容易に でき,不安低源の探索に絶大な威力がある。図9に KEK-PF リング進行方向フィードバックの ON/OFF 時,ストリーク カメラで測定したビームの情報を示す。図の上下方向がビー ム進行方向で,フィードバック OFF(左図)ではバンチ毎 に大きく位置が前後しており,進行方向不安定が起こって いることが分かるが,フィードバック ON(右図)ではバ ンチ重心がきれいにそろい,不安定が抑制されていること が分かる(もっと細かく見ると,右図でもバンチ長がバン チ毎に長くなったり,短くなっていることが分かる。これ は四極振動が残っていることを示しており,通常のバンチ フィードバックシステムではちょっとお手上げである)。

図 9. KEK-PF リングビーム進行方向のストリークカメラ画像 左が進行方向フィードバック OFF,右が進行方向フィードバック ON の場合のものである。

これに加え,現在,バンチ位置検出系の性能向上のための共同研究を進めており,試験回路の製作,加速器を使った試験が iGp の試験と並行して進められている。

SuperKEKB に向けては,ここで紹介したもの以外にも 数多くの極めて重要で,かつ困難な開発が続けられている。 たとえば,衝突点では現在よりずっとベータトロン関数を 絞らなければならず,それに必要な特殊磁石群(超伝導電 磁石など)の設計,開発,最適化が必要である。現在より 遙かに巨大な電流を安定に保持するためには,現在の高周 波加速システムを大きく増強するとともに(当然巨額の費 用が必要となる),加速空洞に関しても(現在とは最適点が 変わってくるので)各種の構造変更が必要になると思われ, そのための検討,開発が行われている。電流増加に伴い,

異常時にビームを1 ターン以内に蹴り出すアボートシステ ムの立ち上がりに必要なアボートギャップがあることによ る悪影響(たとえば transient beam loading) が急激に増加 するため、より速い立ち上がりのアボートシステムの開発 も必須である。大電流ビームがアボート時に通過するアボー ト窓の開発も必要である。高いルミノシティを出すのに必 要なクラブ空洞に関しても、現有のものをそのまま使い続 けることは困難と思われ,より大電流に対応し,かつ出来 ればより大きな電場が出るものが望ましく,検討が続けら れている。入射器についても,より陽電子強度を増強する こと、今のままのエミッタンスでは衝突点が厳しくなる(特 に陽電子)ため、ダンピングリングを設置してエミッタン スを下げることも検討している。もっと実際的な問題とし て,冷却水などの施設の老朽化の問題(トリスタン時代か らの施設を使い続けているため),大電流化により廃熱が増 大するための施設増強が必要となる(これらも大変大きな 出費と時間が必要な作業である)。これらのうち,たとえば 運転開始後年次計画で順次増設してゆくことが可能なもの (たとえば高周波加速空洞の追加など)もあれば,改造休止 期間中(たとえば3年間とか)にやってしまわなければ後 からではできないものなどがあり,それに応じて現時点で の検討のプライオリティが変わるが,いずれにしても各グ ループで精力的な検討が続けられている。

5. まとめ

SuperKEKB パラメータについて,まずどうすればルミ ノシティを上げることができるかを定性的に紹介し,本計 画で採用する方針をイタリアの SuperB 計画と比較して紹 介した。計画実現に向けて現在進んでいる R&D のうち, 真空チェンバーおよび真空部品開発とモニター開発の一部 のトピックスについて紹介した。

筆者はこのモニター・フィードバックシステム開発を行っ ているハードウエア屋で,ヒドイことに計画の全容をちゃ んと把握してはおらず,また衝突型加速器の深奥なビーム 物理学についても正しく紹介する知識がまったく不足して おり,必要なことを正確に紹介できたか極めて怪しいこと をお詫びする(正直言って,このような紹介を行うことに 関して極めて不適任であると断言できる)。また,計画実現 に向けて,現時点でもパラメータが日進月歩で大きく変わっ ており,ここで紹介したパラメータがあっという間に黒歴 史に封じられる可能性もある。しかしながら,SuperKEKB 計画全体は,(ひいき目かもしれないが)他の将来計画と比 べても実現性が極めて高く(不定な要素が少ない),近い将 来スタートしても,運転開始後比較的近い時期に目標を達 成出来るだろうと確信している。 本稿作成においては,多くの方に資料,データを提供し ていただきました。特に,小磯晴代氏,船越義裕氏,大見 和史氏,末次祐介氏,柴田恭氏,江川一美氏には本文を読 んでいただいて,多くの不備,大間違い,などご指摘いた だきました。感謝します。

参考文献

- 大西幸喜「ルミノシティフロンティア」 OHO'04 テキスト.
- [2] K. Abe, et al. "Letter of Intent for KEKB Super B Factory," KEK Report 2004-4.
- [3] P. Raimondi, 2nd SuperB Workshop, Frascati, 2006.
- [4] M. E. Biagini, "SuperB-Factory Accelerator Project Overview," Japan-Italy Collaboration Meeting "Crab Factories", Frascati, 2008.
- [5] C. Milaardi, "DAFNE Achievements with Crab Waist Collision Scheme," Japan-Italy Collaboration Meeting "Crab Factories," Frascati, 2008.
- [6] 高エネルギー分野における日米科学技術協力事業
 「次世代高ルミノシティコライダーのための開発研究」
 代表:生出勝宣(KEK), John Seeman (SLAC).