研究紹介

S1-Global:国際協力によるクライオモジュールの建設

大内徳人,加古永治,

小島裕二,近藤良也,佐藤昌史, 宍戸寿郎, 設楽哲夫, 土屋清澄, 寺島昭男, 峠 暢一, 仲井浩孝,

野口修一,早野仁司,東 憲男,山口誠哉,山本 明,山本康史,横谷 馨,渡辺 謙,

高エネルギー加速器研究機構, KEK (Japan)

C. Pagani, P. Pierini, A. Bosotti, R. Pararella, INFN/U. Milano (Italy)

K. Jensch, D. Kostin, L. Lilje, A. Matheisen, W.-D. Moeller, M. Schmoekel,

P. Schilling, H. Weise, DESY (Germany)

T. Arkan, S. Barbanotti, M. Battistoni, H. Carter, M. Champion, R. Kephart, J. Kerby,

D. Mitchell, T. J. Peterson, M. Ross, B. Smith, FNAL (USA)

2010年7月14日

Abstract

In an attempt to demonstrate an average accelerating gradient of 31.5 MV/m, as currently being envisaged in the design of the International Linear Collider (ILC), an international collaboration by KEK, INFN/Univ. of Milano (Italy), FNAL (USA), DESY (Germany) and SLAC (USA) is pursuing a joint experiment of building and operating eight units of 9-cell L-band cavities in a common cryostat. The experiment is called the S1-Global project. This project is conducted in the framework of the Global Design Effort (GDE), and is hosted by KEK. The S1-Global system joins two half-length cryomodules, each having a length of 6 m and containing 4 cavities. The vacuum vessel and most of the cold-mass elements for one of the two cryomodules, Cryomodule-C, has been prepared by INFN/Univ. of Milano, and contains two cavities from FNAL and two cavities from DESY. The other cryomodule, Cryomodule-A, has been built by KEK and contains four KEK cavities. The assembly of the cryomodules was started in January 2010, and was completed in May. The first cooling-down test of the S1-Global cryomodules is presented.

1. はじめに

S1-Global 計画は、国際リニアコライダー(ILC, International Linear Collider)の主線形加速器に用いられるクライ オモジュールの実証試験を目的とする。ここで, S0 は空洞 単体試験,S1はクライオモジュール試験,S2は加速器ユニッ トでのビーム試験を示す。S1-Global クライオモジュール建 設は, 2008 年 4 月に米国 FNAL 研究所で開かれた超伝導 RF 技術会議で ILC 開発の国際研究協力の一環として提案 され、会議参加研究所の合意の下に進められることになっ た。S1-Global プログラムでは, クライオモジュールに組み 込まれる8台の超伝導空洞により、ILCの設計運転値であ る 31.5 MV/m を平均加速電界として達成することを第一目 標としている。S1-Global クライオモジュールは2台の6メー トルクライオモジュール(Module-A, Module-C)からなり, FNALとDESYから提供された4組の超伝導空洞とインプッ トカップラー, KEK 提供の同4組がこれら2台のクライオ モジュールに組み込まれる。Module-C はイタリア INFN 研 究所が中心となり建設をおこない, Module-A は STF-1 で 建設・試験をおこなったクライオモジュールを S1-Global 用に改造したモジュールである。

S1-Global クライオモジュールの設計は KEK が主体的に 行い 2009 年に完了した[1]。 クライオモジュールの組立ては 2010年1月に開始され、5月にSTFトンネルへの据付を完 了した[2]。クライオモジュールの冷却は6月から開始され、 現在順調に試験を進めている。本報告では、S1-Global クラ イオモジュール設計から建設にいたる本グループの活動を 紹介する。

2. S1-Global クライオモジュールの概要

まず、国際研究協力としての S1-Global プロジェクトの 研究協力体制を以下にまとめた。

- INFN: Module-C の設計・建設と FNAL 超伝導空洞用 ブレード型チューナー[3]の製作および組立て。
- FNAL: TESLA 型空洞2台、インプットカップラー、 空洞ジャケットへのブレード型チューナーの組立て。
- DESY: TESLA 型空洞2台, インプットカップラー, サックレー型チューナー[4], Module-C用インプットカッ プラー4台の組立て。
- SLAC: Module-C 用高周波電力分配装置, FNAL 用インプットカップラーのエージング。
- KEK: TESLA 改良型空洞4台, 2タイプのスライドジャッ キ型チューナー[5], KEK 空洞用 Module-A の改造,高 周波電力分配システム, Module-A および Module-C の 組立て,冷却試験装置。

S1-Global クライオモジュールでは,8台の超伝導空洞を ILCの運転加速電界31.5 MV/mで運転することが第一課題 であるが,以下の研究課題も含まれている。

- 31.5 MV/mの加速電界をILC運転モードである5Hzの RFパルス運転の実施。RFパルスは、1msのフラット トップをもち、パルス振幅は0.07%のrms 誤差、0.35 度のrms位相誤差を満足する。
- 異なる設計の超伝導空洞を含んだクライオモジュールの 設計,組立て、アライメントの経験をえること。
- 無負荷状態と31.5 MV/mの負荷運転での熱負荷測定。
 異なる設計の超伝導空洞とクライオモジュールの熱的な
 性能の比較。
- 設計の異なる周波数チューナーおよびインプットカップ
 ラーを装着した超伝導空洞パッケージの性能比較。
- ILCクライオモジュール建設時に基本的な設計概念とし て受け入れられている"plug-compatible-concept"の先導 的な実施。

3. クライオモジュールの設計・製作

S1-Global クライオモジュールの設計は2008年5月から, KEK, INFN, FNAL が協力しておこない,2009年1月に クライオモジュール部品製作を開始できる段階にまで到達 した。最終図面が完成したのは,組込まれる超伝導空洞が 決まる2010年1月である。

S1-Global クライオモジュールは図1に示すように、2台 の6メートルのクライオモジュール(Module-A, Module-C) から構成される。FNAL と DESY からの4台の超伝導空洞 は Module-C に組込まれ、KEK からの4台の超伝導空洞は Module-A に組込まれる。2台のクライオモジュールを接続 したS1-Global クライオモジュールの全長は14.9m である。 2台のクライオモジュールのパラメータを表1に示す。 図 2 に Module-C の断面設計を示す。低温部分は真空容 器から 2 本の G-10 のポストで吊り下げられている。図 1 に示すように, FNAL と DESY の空洞は異なる形状,長さ であるがクライオモジュール内では同じ間隔で配置される。 この間隔は DESY-XFEL クライオモジュール内での値と同 じ 1383.6 mm に統一されている。また,超伝導空洞パッケー ジの設計は異なるが,超伝導空洞を支持する機構および形 状は ILC の設計思想である "plug-compatibility"を満足する 設計になっている。

Module-Aは、STF-1でKEK空洞4台の冷却試験をおこ なったものを改造して再利用された。このクライオモジュー ルの熱的・機械的な設計は、Module-Cと同じTTF-Type-III クライオモジュール[6]の設計を基本としている。低温部分 の支持方式、断熱方式は図2,3に示すように同じ様式となっ ているが、冷却配管および熱シールドのサイズは日本での 製作とSTFでの運転に適した設計にしてある。

表 1	S1-Global	ク	ライ	オモジョ	ュールパラフ	ィータ
-----	-----------	---	----	------	--------	-----

	Module-A	Module-C					
Vacuum vessel length	$6087\mathrm{mm}$	$5800\mathrm{mm}$					
Vacuum vessel O.D.	$965.2\mathrm{mm}\phi$	$965.2\mathrm{mm}\phi$					
Gas return pipe length	$5830\mathrm{mm}$	$6000\mathrm{mm}$					
Gas return pipe O.D.	$318.5\mathrm{mm}\phi$	$312.0\mathrm{mm}\phi$					
2K LHe supply pipe O.D.	$76.3\mathrm{mm}\phi$	$76.1\mathrm{mm}\phi$					
5K shield pipe $O.D.[F/R]$	$30 \ / \ 30 \ \mathrm{mm}\phi$	$60~/~60.3\mathrm{mm}\phi$					
80K shield pipe O.D.[F/R]	$30 \ / \ 30 \ \mathrm{mm} \phi$	$60~/~60.3\mathrm{mm}\phi$					
Cool-down pipe O.D.	$27.2\mathrm{mm}\phi$	$42.2\mathrm{mm}\phi$					
Distance between couplers	$1337.0\mathrm{mm}$	$1383.6\mathrm{mm}$					
Cavity package	$\operatorname{KEK-a/KEK-b}$	FNAL/DESY					
Cavity type	TESLA-like	TESLA-type					
Tuner type	Slide jack	Blade/Saclay					
Input coupler type	Disk window	Cylindrical window					
Magnetic shield	Inside jacket	Outside jacket					
Package length	$1247.6\mathrm{mm}$	$1247.4/1283.4\rm{mm}$					

(c) KEK-a 空洞 – スライドジャッキ型チューナー, (d) KEK-b 空洞 – スライドジャッキ型チューナー。

図1に示すように、Module-A に組込まれる KEK 超伝導 空洞パッケージは、Module-C の FNAL と DESY 空洞にお いて周波数チューナーの設計が異なるように、チューナー の位置が異なる2種類の設計である。この周波数チューナー の性能評価も S1-Global クライオモジュールでの重要な研 究テーマである。KEK の空洞パッケージの内、中央部に チューナーを持つものは、ガス回収配管からの支持機構が FNAL/DESY 空洞と同じ構造を持ち"plug-compatibility"を 満足する設計となっているが、他方の空洞は、サポート間 隔が若干短く 650 mm で設計されている。

図2 FNAL 超伝導空洞部の Module-C 断面形状

4. 9 セル超伝導空洞の性能試験結果

S1-Global クライオモジュールに組込まれる2種類の超伝 導空洞を図4に示す。DESY および FNAL では, DESY で 開発された TESLA 空洞を用いた研究が継続しておこなわ れており、KEK では電磁界応力によるセル変形を抑制する ために TESLA 空洞に剛性を強める改良などを加えた TESLA 改良型空洞を開発した。S1-Global 用超伝導空洞 8 台は、それぞれの研究所で製造された後、空洞単体での高 電界性能の確認試験がおこなわれており,図5,6,7にKEK 空洞4台, FNAL空洞2台, およびDESY空洞2台の性能 測定の結果をそれぞれ示す。KEK 空洞については、1 空洞 が 33 MV/m を達成しているが、3 空洞は 27 MV/m であり、 電界放出電子によるQ。値の低下が高電界で見られる。DESY 空洞および FNAL 空洞では、いずれも 29~33 MV/m が Q。 値の著しい低下もなく達成されている。図8に、縦型クラ イオスタット(cw 運転)での S1-Global 用 8 空洞の最大加速 電界を示す。8空洞の平均は30 MV/m である。クライオモ ジュールに組込んだ状態でのパルス運転において、平均加 速電界 31.5 MV/m を達成することが S1-Global での第一の 目標である。

図4 上 TESLA型 DESY/FNAL 超伝導空洞[7] 下 TESLA改良型 KEK 超伝導空洞[5]

5. 空洞の4連化組立て

高電界性能の確認を終えた空洞は、チタン製ヘリウム槽 ジャケットが溶接され、各研究所のクリーンルーム内で低 温部カップラーおよび真空フランジなどが装着された後、 空洞内部を真空状態にして KEK に空輸された。KEK 受入 れ後に、加速モード共振周波数の確認および HOM カップ ラーの加速モードの遮断周波数の調整などの高周波測定が おこなわれた。空洞外面の十分な清浄化をおこなった空洞 は、クリーンルーム内へ搬入され、架台の上に設置された。 2010 年 1 月中旬に開始されたクラス 10 のクリーンルーム 内での空洞の4 連化組立て作業の様子を図 9, 10 に示す。

図9 FNAL/DESY 空洞の4連化組立て作業

図10 KEK 空洞の4連化組立て作業

また, KEK 空洞の4連化組立て完成後には,図12に示す ように STF 関係者の記念撮影がおこなわれた。

図 11 FNAL/DESY/KEK 空洞組立てチーム

図 12 KEK 空洞の 4 連化組立て完成後の記念撮影

6. 周波数チューナーの組立て

クリーンルーム内で4連化された空洞は、レール上を移 動してクリーンルーム外の周波数チューナー取付けエリア に設置された。S1-Global 用 8 空洞には、チューナー性能の 比較をおこなう目的で、異なるタイプのチューナーが4種 類用いられている。図 13 に示すように, FNAL 空洞にはブ レード型チューナー, DESY 空洞にはサックレー型チュー ナーが取付けられ、それぞれのチューナー機構にはローレ ンツ・デチューニング補正用の2台のピエゾ素子が組み込 まれている。KEK 空洞には,図14に示す1台のピエゾ素 子を組み込んだスライドジャッキ型チューナーが用いられ た。チューナーの設置位置の異なる2タイプがあり、2空 洞は中央部に、2空洞は端部に取り付けられている。FNAL 空洞および DESY 空洞へのチューナーの取付けは、図 15 に示すように INFN から3名, FNAL から1名のチューナー 組立てチームによって、2月中旬におこなわれた。また、 FNAL/DESY 空洞への磁気シールドおよび断熱シートの装 着作業も同時におこなわれた。組立て終了後には,KEKの 協力下で各チューナー機構の動作試験もおこなわれ,周波 数変化の良好な動作を確認した。図16に,チューナー組立 ての完了した4連化KEK空洞を示す。

図 13 左 FNAL 空洞用ブレード型チューナー[3] 右 DESY 空洞用サックレー型チューナー[4]

図 14 KEK 空洞用スライドジャッキ型チューナー[5]

図 15 FNAL/DESY 空洞チューナー組立てチーム

図 16 チューナー組立ての完了した KEK 空洞

7. コールドマスの組立て

冷却配管,5K熱シールド,80K熱シールド,多層断熱 シート,および,サーマルアンカーなどのコールドマスの 組立ては,まず Module-C からおこなわれ,引き続き Module-A が組み立てられた。この作業は2010年1月25 日に開始され,Module-Cは予定通り3月19日に完成した。 Module-A も4月27日に組立てを完了し,翌28日にトンネ ルへ移動・配置を行った。Module-Cの組立て作業において, 磁気シールドの組立て,チューナー調整などは,INFN お よびFNAL研究者の協力を得て進めた。作業内容は以下の 様になる。

- 1. Ti 材の液体ヘリウム供給配管および Ti-SUS 異材継手の 溶接。
- INFNおよびFNAL研究者によるブレード型/サックレー 型チューナーの調整,磁気シールドの組立て。
- 3. 図 17 に示すように,超伝導空洞をガス回収配管への取 付け,および空洞スライド機構の調整。
- 冷却配管の組込み、空洞軸方向位置固定用インバーロッドへの空洞固定。
- 5. 5K 熱シールドの組立て,溶接,10 層の多層断熱シート (super-insulation)の取付け。
- 6. 80K 熱シールドの組立て,溶接,30 層の多層断熱シートの取付け。
- Module-C へ温度計 106 個, wire position monitor(WPM)
 5 台, 歪ゲージ 24 個, pin diode 24 個の取付け。
- コールドマスを真空容器(クライオスタット)へ挿入(図 18参照)。
- 9. 挿入後,完成したクライオモジュールを地下のトンネル へ移動し据付。

Module-A についても同様の組立てがおこなわれ,以上述 べたセンサーの他,空洞ヘリウム容器に8台のWPM,ク ライオスタットに4台のレーザー位置測定器が取り付けら れている。レーザー位置測定器は冷却中のガス回収配管の 動きを測定するために取り付けられた。

図 17 ガス回収配管への FNAL 空洞の取付け

図 18 真空容器への Module-C コールドマスの挿入

8. STF トンネル内への設置・配管接続

Module-A と-C をトンネルに移動した後の組立て作業と しては、Module-C と2K冷凍器間、および Module-C と Module-A 間の配管接続、Module-A 端部配管組立て、リー ク・圧力試験がおもな作業となる。図19にヘリウム冷却配 管の接続が終了したクライオモジュールの様子を示した。 ヘリウムリーク試験では、熱シールド冷却配管部でヘリウ ムリークが検知されたものの、空洞の冷却ラインではリー クは検知されず、トンネルへの設置・冷却配管組立て・熱 シールド組立てなど予定されたスケジュールで完了した。

図 19 ヘリウム冷却配管接続作業が完了した S1-Global クライオ モジュール(手前から, Module-A, Module-C)

9. インプットカップラーの組立て

低温部と室温部の二重の高周波窓を有するインプトカッ プラーが、S1-Global 用 8 空洞に用いられた。低温部カップ ラーは、空洞を清浄環境下で真空封止するためにクラス 10 クリーンルーム内にてすでに取り付けられており、トンネ ル内では低温部カップラーへの室温部カップラーの接続お よび導波管変換器の取り付けがおこなわれた。図20に、FNAL 空洞およびDESY 空洞に用いられた TTF-III インプットカッ プラーを示し、図 21 に KEK 空洞用 STF-II インプットカッ プラーを示す。これら 2 種類のインプットカップラーでは セラミック窓の形状が異なっており、TTF-III では円筒型 セラミック窓、STF-II では同軸円盤型セラミック窓を採用

図 20 FNAL/DESY 空洞用 TTF-III インプットカップラー[8]

図 21 KEK 空洞用 STF-II インプットカップラー[9]

している。また、空洞への取付けポートの口径として、TTF-III では40mm¢であるが、STF-IIでは60mm¢と大口径になっ ておりセラミック窓部での通過電力密度が緩和されている。 FNAL 空洞および DESY 空洞への室温部 TTF-III カップ ラーの取付け作業は、DESY からの1名と KEK との協力 でおこなわれた。その様子を図 22 に示す。4 台の室温部 TTF-III カップラーの取付け作業は、3月下旬に約4日間で 完了した。一方、KEK 空洞への室温部 STF-II カップラー の取付け作業は5月中旬におこなわれた。その様子を図 23 に示す。カップラー取付けを清浄環境下でおこなうために、 簡易型クリーンブースを設置し、クリーンウェアを着て作 業がおこなわれた。8 台のインプットカップラーおよび導 波管変換器(通称、ドアノブ)の取付けが完了した S1-Global クライオモジュールを図 24 に示す。

図 22 FNAL/DESY 空洞への室温部カップラーの取付け作業 (TTF-III インプットカップラー)

図 23 KEK 空洞への室温部カップラーの取付け作業 (STF-II インプットカップラー)

図24 8台のインプットカップラーの取付けが完了した S1-Global クライオモジュール

10. クライオモジュールの冷却準備

S1-Global クライオモジュール内コールドマスの最終組立 てが完了後、クライオスタットの端部フランジが取り付け られ、内部真空排気がおこなわれた。また、この段階で冷 却状態をモニターするセンサー類の最終確認がおこなわれ た。クライオモジュールに取り付けられた全センサーは、 温度計 214 点, 歪計 48 点, pin diode 48 点, WPM 18 点, 位置測定計 5 点となった。

ヘリウムリーク試験が完了後,クライオモジュールに2K の液体ヘリウムを供給する2K冷凍器と地上部冷却システ ムとの低温配管が接続され,6月4日冷却が可能な状態に なった。2K冷凍器を図25に示す。冷却が開始されたのは 6月8日で,2010年1月に始まった組立てスケジュール表 に記載された6月7日の冷却開始予定日から1日の遅れで すべての組立て作業を終えることが出来た。

図 25 2K 冷凍器と S1-Global クライオモジュール

11. クライオモジュール試験のスケジュール

クライオモジュールの冷却試験は2回に分けておこなわ れ、6、7月の第1回冷却時にはおもに低電力高周波試験、 9~12月の第2回冷却時にはおもに大電力高周波試験が予 定されている。それぞれの冷却試験においておこなわれる 試験項目を以下に示す。

第1回冷却試験:6~7月の6週間

- 1.4Kでの静的熱負荷測定。
- 2.2Kでの静的熱負荷測定。
- 3. 粗調整用モーターチューナーの周波数可変範囲, ヒステリシス特性測定。
- 微調整用ピエゾチューナーの周波数可変範囲, ヒステリシス特性,周波数調整の再現性測定。
- 5. インプットカップラー結合度可変範囲測定。
- 6. モニターカップラーの結合度の較正。
- 7. HOM カップラーの加速モードのフィルター特性測定。
- 8. ピエゾチューナーのパルス応答特性測定。
- 9. 機械振動モード測定。

などをおもにおこなう予定である。

8月末から9月初旬の期間:2週間

インプットカップラー8 台の大電力高周波源による室温での RF エージングをおこなう予定である。

第2回冷却試験:9~12月の15週間

- 1.4Kでの静的熱負荷測定。
- 2.2Kでの静的熱負荷測定。
- 3. 高電界発生実験(各1空洞)。
- 4. ローレンツ・デチューニング測定。
- 5. ローレンツ・デチューニングの補正実験。
- 6.1 空洞毎の動的熱負荷測定。
- 7.4 空洞同時運転の動的熱負荷測定。
- 8.8空洞同時運転の動的熱負荷測定。
- 9. 低電力高周波制御システム(LLRF)の実験。
- 10. 分布型大電力高周波源システム(DRFS)の実験。

などをおもにおこなう予定であり、12月末にはS1-Global ク ライオモジュールに関するすべての試験を終了する。

12. まとめ

S1-Global クライオモジュールの建設計画は 2008 年 4 月 に提案されて以降,各研究所間の調整,設計段階を経て, 2009 年 12 月末までに, INFN から Cryomodule-C, DESY から 2 空洞, FNAL から組立て部品を含む 2 空洞(1 空洞は 1 月初め着)が無事に KEK に届けられ,2010 年 1 月より S1-Global クライオモジュールの建設を開始した。その後, 組立て作業は順調に進められ,5 月末にはトンネル内作業 も終了し,冷却試験の準備を当初の予定通りに完了した。6 月下旬の現在,S1-Global クライオモジュールは,順調に2K へ冷却され,空洞の低電力試験がおこなわれており,12 月 末までクライオモジュール試験が続けられる予定である。

[参考文献]

- N. Ohuchi, et al., "Plan of the S1-Global Cryomodule for ILC", PAC09, Vancouver, BC, Canada (2009) WE6RFP005.
- [2] N. Ohuchi, et al., "Construction of the S1-Global Cryomodule for ILC", IPAC10, Kyoto, Japan (2010) WEPE008.
- [3] L. Lilje, "XFEL : Plans for 101 Cryomodules", SRF'07, Peking University, Beijing, China, (2007) MO102.
- [4] C. Pagani, et al., "Piezo-assisted Blade Tuner : Cold Test Results", SRF'07, Peking University, Beijing, China (2007) TUP72.
- [5] E. Kako, et al., "Cryomodule tests of four Tesla like cavities in the Superconducting RF Test Facility at KEK", PRST-AB, Vol. 13, 041002 (2010).
- [6] C. Pagani, et al., "The TESLA Cryogenic Accelerator Modules", TESLA Report 2001-36.
- [7] B. Aune, et al., "Superconducting TESLA Cavities", PRST-AB, Vol. 3, 092001 (2000).
- [8] W.-D. Moeller, et al., "High Power Coupler for the TESLA Test Facility", SRF'99, Santa Fe, NM, USA (1999) p577.
- [9] E. Kako, et al., "Advances and Performance of Input Couplers at KEK", SRF'09, Berlin, Germany (2009) p485.