The KEKB B-Factory

KEK 加速器研究施設

小磯晴代

for the KEKB and SuperKEKB Accelerator Group

1 はじめに

高エネルギー加速器研究機構のBファクトリーKEKBは, ピーク値・積分値ともに設計時の目標を大きく上回るルミ ノシティを達成し,2010年6月30日にビーム運転を終了 した。現在,2014年度内の運転再開を目指して SuperKEKB への改造作業が急ピッチで進められている。

KEKB は3.5 GeV 陽電子リング(LER),8 GeV 電子リン グ(HER),および入射リニアックから成る,エネルギー非 対称な2リング・コライダーである。KEKBの設計が開始 された1989年頃は,米国 Cornell大学のCESR(5.3 GeVの 1リング電子・陽電子コライダー)がルミノシティ最前線に 立っており,KEKBが目指すルミノシティ1×10³⁴ cm⁻²s⁻¹は, CESR の100 倍に当たるものであった(図1)。

KEKB のビーム運転は, KEKB のために増強した入射リ ニアックのコミッショニング(1997年)に始まり, 1998年 12月に電子リングが, 1999年1月に陽電子リングが立ち上 がった。先行するライバル PEP-II を追い越し, 当時の世界 最高値 0.34×10³⁴ cm⁻²s⁻¹を達成したのは 2001年である。以 後は一貫してルミノシティ最前線を走り続け, 2003年5月 (リング運転開始後4年半)に設計ルミノシティを実現し, 最終的には設計値の2倍を越えるピーク・ルミノシティ 2.11×10³⁴ cm⁻²s⁻¹と総積分ルミノシティ1040 fb⁻¹を達成し ている。衝突方式については, 2006年末まで有限角度交差 方式(衝突点で水平方向に22 mradのビーム交差角度があ る)で, 2007年以降はクラブ交差方式で運転がなされた(表 1)。

KEKB の歴史と成果をまとめるにあたって, ハードウェ ア機器の到達点や大電流運転の経験などについては,後に それぞれふさわしい方に語っていただくこととし,ここで は,主要な加速器パラメ-タの設計値とその実現値,あわせ てビーム運転に関するいくつかの話題を紹介したいと思う。 KEKB については,小林・益川理論の実証に貢献したこと を記念して加速器学会誌に特集[1]が組まれ,2009年のクラ プ交差によるルミノシティ記録更新についても詳しい報告 [2]がなされている。そちらも是非ご参照ください。

表1:KEKB の主な履歴

1989	設計開始				
1994	建設開始				
1997	入射リニアック改造終了,ビーム運転開始				
1998	リング ビーム運転開始				
1999	Belle 検出器で最初の素粒子反応観測				
2001	PEP-II を追い越し,当時の世界最高ルミノシ				
	ティ $0.34 imes10^{34} m cm^{-2}s^{-1}$ 達成				
2002	陽電子 2 バンチ/パルス入射開始				
2003	設計ルミノシティ $1 imes10^{34} m cm^{-2}s^{-1}$ 達成				
2004	連続入射モード開始				
2007	クラブ交差開始				
2009	電子・陽電子同時入射開始				
	クラブ交差以前の記録を更新し,設計値の2倍				
	を超える $2.11 imes10^{34} m cm^{-2}s^{-1}$ 達成				
2010	積分ルミノシティ1040 fb ⁻¹ 達成				
	アップグレードに着手				

2 加速器パラメータの設計と現実

ルミノシティ(L)を決める三つの主要パラメ-タは,

- ビーム電流(I_±)
- 衝突点における垂直方向 β 関数 (β^{*}_a)
- 垂直方向ビームビーム・チューンシフト・パラメータ(ξ_{n+})

図 2: KEKB の履歴[4]。上段からピーク・ルミノシティ (1/nb/s = 10³³ cm⁻²s⁻¹),1 日の積分ルミノシティ,ビーム電流最大値,総積分ルミ ノシティと効率(1日の積分ルミノシティとピーク・ルミノシティ×24 時間の比率)

である。ルミノシティはこれらのパラメータによって次式 のように表される。 +/ - は陽電子/電子ビームのパラメー タを示す。また、衝突点の β 関数とビームサイズは両ビー ムで等しいと仮定している。

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_y^*} \left(\frac{R_L}{R_{\xi_{y\pm}}} \right)$$
(1)

 $R_L \ge R_{\xi_{y_{ac}}}$ はそれぞれルミノシティと ξ_{\pm} に対する補正係数で,衝突点における交差角や砂時計効果などの影響を表す。 バンチ長が β_y^* に比べて充分に小さければ,補正係数の比は $R_L / R_{\xi_{y_{ac}}} \sim 1 \ge c_x^2$ はローレンツ・ファクター, r_e は古典電子半径, $\sigma_{x,y}^*$ は衝突点における水平・垂直ビームサイズである。

この式に陽に現れていない,水平方向エミッタンス (ε_x), 衝突点における水平方向 β 関数 (β_x^*),交差角,バンチ長など は、 $\xi_{y\pm}, R_L, R_{\xi_{y\pm}}$ を通じてルミノシティに寄与する。そして, すべてのパラメ-タは複雑に依存しあっている。

式(1)が示すように,高ルミノシティを得るには,できる かぎり $I_{\pm} \geq \xi_{y\pm}$ を大きく, β_{y}^{*} を小さくすべし。この基本的 な方針に沿い,既存コライダーの実績やシミュレーション の結果などを総合的に判断して,KEKB では $\xi_{y\pm} = 0.052$, $\beta_{y}^{*} = 1 \text{ cm}, I_{\pm} = 2.6 \text{ A}(\text{LER}) / 1.1 \text{ A}(\text{HER})$ を選択した。 Belle 実験開始後の全期間の履歴を図2に,また,主な加速器パラメータについて,有限角度交差とクラブ交差でそれぞれ最高ルミノシティを達成した時の値を,KEKBおよび SuperKEKB の設計値と合わせて表2に示す。

2.1 ビーム電流とバンチ間隔

KEKB の性能に最も大きな影響を及ぼしたものは,電子 雲不安定性による LER(陽電子リング)の垂直方向ビームサ イズ増大である。設計段階で考慮された電子雲による不安 定性は結合バンチ不安定性であり,ビームパイプをアンテ チェンバー型にしなくともバンチ毎フィードバックによっ て抑制できると予想された。ところが実際に障害となった のは単バンチ・ヘッドテイル不安定性であり,これはフィー ドバックで抑えられず,ビーム軌道上の電子雲密度を下げ るためにドリフト空間にソレノイドを巻くという対策を講 じて[6],ようやく2001年にルミノシティ最前線に立つこと ができた。

電子雲の影響は、最後まで完全には排除できず,設計で は(ビームアボートのための空隙を除いて)すべての RF バ ケットにバンチを詰めることを想定していたが,実際は平 均3.06 バケットが限度であった。このため、設計値と比較 してバンチ数が少なくバンチ電流が大きい状態で運転する こととなり,大電流を蓄積するに当たって各種ハードウェ ア機器には大きな負担を強いることになった。

表 2:主要な加速器パラメータ。衝突点の水平ビームサイズは設計値,垂直ビームサイズは両リングで等しいと仮定してルミノシティから 推定した値である。ルミノシティ 21.08/nb/s のとき、ビームビーム効果を考慮すると、水平ビームサイズは設計値より小さくなり、逆に垂 直ビームサイズは増加して ~ 1.4 µm と推定される[5]。 $(1/nb/s = 10^{33} \text{ cm}^{-2} \text{s}^{-1})$

	SuperKEKB	6/17/2009	11/15/2006	KEKB Design	
Energy	4.0 7.0	3.5 8.0	3.5 8.0	3.5 8.0	GeV
Eff. crossing angle	83	0 (crab)	22	22	mrad
Current	3.6 2.6	1.64 1.19	1.65 1.33	2.6 1.1	А
Bunches	2500	1584	1389	5000	
Current/bunch	1.44 1.04	1.03 0.75	1.19 0.96	0.52 0.22	mA
Spacing	mostly 1.2	mostly 1.8	1.8 or 2.4	0.6	m
Emittance ε_x	3.2 4.6	18 24	18 24	18 18	nm
β_x^*	32 25	1200 1200	590 - 560	330 330	$\rm mm$
β_y^*	0.27 0.30	$5.9 ext{ } 5.9$	$6.5 ext{ } 5.9$	10 10	$\rm mm$
Hor. Size @IP	10 11	147 170	103 116	77 77	μm
Ver. Size @IP	0.048 0.062	0.94 0.94	1.9 1.9	1.9 1.9	μm
Bunch length	6 5	~ 7	~ 7	4	$\rm mm$
ξ_x	.003 .001	.127 .102	.116 .134	.039 .039	
ξ_{u}	.088 .081	.129 .090	.101 .056	.052 .052	
Luminosity	800	21.08	17.6 (*)	10	$/\rm{nb/s}$
Lum./day	-	1.479	1.232	~ 0.6	/fb
Lum./7 days	-	8.43	7.82	-	/fb
Lum./ 30 days	-	27.2	30.2	-	/fb

2.2 ビームビーム・パラメータと交差方式

2.2.1 有限角度交差

KEKB では、衝突点においてビーム軌道に水平方向 22 mrad の交差角を与えている[7]。有限角度交差方式には、 衝突点近傍にビームを分離するための偏向磁石を配置する 必要がなく、衝突点の設計が単純化され、測定器バックグ ラウンドも大幅に軽減される、という大きな利点がある。また、有限角度交差によるシンクロトロン・ベータトロン結 合の影響は、ベータトロン・チューンを適切に選べば障害 とならないことが、設計時のシミュレーションで確認され ていた。KEKB では実際に、有限角度交差によって設計値 を大きく上回る 1.76×10^{34} cm⁻²s⁻¹ が達成され、ビームビーム・パラメータについても設計値を超える $\xi_y = 0.056$ が得られた。

2.2.2 クラブ交差

ビーム軌道の交差角を維持したまま正面衝突と同等の衝突状態を実現できるクラブ交差が注目されたのは,正面衝突で飛躍的に大きな ξ₀を達成できる可能性のあることが, ビームビーム・シミュレーションの進歩によって新たに示されたからである[8]。クラブ交差に必要な超伝導クラプ空洞は,有限角度交差のバックアップとして KEKB の当初から開発が進められていた。 KEKB は,2007年に両リングに1台ずつクラブ空洞を設置し,クラブ交差によるビーム衝突を開始した。2年間にわたるビーム調整の後,歪6極磁石を導入し水平垂直カップリングの運動量依存性を補正することによって,クラブ設置以前の記録を上回るルミノシティが達成され,これが最終的な KEKB のピーク・ルミノシティ記録となった。

クラブ交差によってビームビーム・パラメータは向上し, 世界最高値に近い値 ($\xi_y = 0.09$)が得られたが,残念ながら シミュレーションから期待された大きな値 ($\xi_y \sim 0.15$) は達 成できていない。この経験が SuperKEKB の設計方針を, 大電流・クラブ交差方式からナノビーム方式に転換する主 要因の一つとなった。

2.3 衝突点β関数

KEKB のビーム光学系は,曲線部を「2.5π セル構造」と 呼ばれる特殊なセルで構成している[7]。このセル構造は, 衝突点垂直β関数を1cm以下に絞った状態で充分な力学口 径を持ち,同時に,水平エミッタンスと運動量圧縮率につ いて各々独立に広い調整範囲を確保できるように設計され たものである。六極磁石はすべて2台の六極間の転送行列 が-I'変換となるようにペアを成し,しかも各ペアが相互 に重なり合わないように配置される。この配置により,六 極磁石の非線形性はペアを成す六極間でほぼ相殺されるの で,広い力学口径を得ることができる。充分な Touschek 寿命を得るために,LER は HER より広い力学口径を必要 とするので,LER には衝突点領域(筑波直線部)にも六極ペ アを設置し「局所色収差補正」を行っている(図3)。

図 3: 2.5π セル構造(LER)。ベータ関数の平方根(上), ディスパー ジョン(下), および磁石配置(六極磁石のみ名前を表示)。

KEKB のビーム光学系は,期待どおりの性能を発揮し, 両リングとも設計値より小さい $\beta_y^* = 0.59 \, \mathrm{cm}$ で安定なビーム運転を実現した。バンチ長 σ_z は $6 \sim 7 \, \mathrm{mm}$ と推定されるので,砂時計効果の観点から許容される限界近くまで β_y^* を絞っている。

2.4 水平エミッタンス

HER の水平エミッタンスは、LER の電子雲対策が不十分 だった時点で, LER とのバランスをとって設計値より大き い24nm に設定された。以後この値で調整が進められたた め,そのままになっている。また,運動量圧縮率は,設計 値よりバンチ数が少なくバンチ電流が大きい状態に対応し て、バンチ長を長めにするように調整された。このような2.5π セル構造のflexibility は,できる限り少ない変更によって SuperKEKBで要求される低エミッタンスを実現するため に,最大限に活用される。

3 ルミノシティ調整

KEKB の高性能を支える主要な項目のすべてが,設計時 に準備あるいは想定されていたわけではない。ビーム運転 の試行錯誤の中から生まれてきたものも多い。そのいくつ かを以下で紹介する。

3.1 入射方式

表1に主要なステップとして挙げた「2バンチ/パルス入 射」、「連続入射モード」、「同時入射」も、当初の計画には なく、ビーム運転の過程で開発されてきたものである[9,10]。 2004 年に実用化された連続入射モードは, Belle 測定器の データ収集を中断せずに,常時入射器からリングへのビー ム入射を行う運転モードであり,ビーム電流を一定に保っ て高ルミノシティを維持できるため,積分ルミノシティを 飛躍的に高めた(図2の2,4段目参照)。 このとき, PEP-II もほぼ同時に連続入射モードを実用化している。

また 2009 年に実現された 3 リング(KEKB-HER, LER, およびPF)への同時入射(入射リニアックの 50 Hz パルス毎 に任意のリングに入射)は,ビーム電流をより精度良く一定 に保つことを可能にし,KEKB のルミノシティ記録更新に 貢献した。もちろん,今後 SuperKEKB にとっては必須の 機能である。

3.2 マシン・エラーの補正

加速器が設計どおりの性能を発揮するには,ビームを使っ たエラーの補正が必須である。特に KEKB では,高ルミノ シティを追求して水平ベータトロン・チューンを半整数共 鳴線に近づけていったために,ビーム光学系はエラーに敏 感になり,補正はますます重要になった。

補正の基本的な方針は「ステアリング磁石によるキック や RF 周波数シフトに対するビーム軌道の応答が,モデル に近くなるように補正する」という単純なもので,四極磁 石電源の微調整と六極磁石に立てる水平・垂直バンプ軌道 がコレクターとして使われた。 –1' 変換で結合された六極 ペアは、垂直方向の対称バンプで水平垂直カップリングを, 反対称バンプでディスパージョンを,それぞれほぼ独立に 調整できるため,大変有効な補正ツールとなった。

3.3 IP ノブ調整

高ルミノシティを達成するには,リング全周のビーム光 学系をグローバルに補正した上で,さらに衝突点の光学系 パラメータを調整する必要があった。ここでも六極バンプ が活躍し,衝突点の両側各8台の六極磁石にバンプ軌道を つくって,衝突点の水平垂直カップリング・パラメータ, 垂直ディスパージョンなどの微調整を行った。調整すべき パラメータは30以上あり,通常は各パラメータを一つずつ スキャンして,ルミノシティ,ビームサイズ,ビーム寿命, チューン,入射効率,等々の限られた観測量を総合的に判 断して最適値を求めた。また2007年頃から downhill simplex 法で多パラメータを同時に最適化する方法も実用化された。

加速器の状態は刻々と変化していくので,物理ランを行いつつ,常に調整が続けられた。

3.4 カップリングの運動量依存性

クラブ交差によるルミノシティ記録更新の突破口を開い たのは, 歪六極磁石による水平垂直カップリングの運動量 依存性の補正である[2]。水平垂直カップリングの原因とな る Belle 測定器のソレノイド磁場は,逆極性の補償ソレノイ ドによって,衝突点の両側でそれぞれ積分値がゼロになる ように補正されている。しかも,衝突点から最終収束磁石 までのドリフト空間内で積分値がゼロに近くなっているの で,運動量がずれた粒子に対してもカップリングはほとん ど発生しない。したがってそれまで水平垂直カップリング の運動量依存性は補正していなかった。

クラブ交差においてルミノシティが予言値に届かない原 因を探る過程で,水平垂直カップリングの運動量依存性が 一因である可能性が指摘され,急遽小型の歪六極磁石を28 台製作・設置し(LER 8台,HER 20台)調整に用いたとこ ろ,明らかな効果があった。

この歪六極磁場による調整は,有限角度交差の場合にも, クラブ交差と同程度の効果があることが,少数バンチ(~100 バンチ,電子雲不安定性の影響を受けない)の衝突実験で確 認された。

4 まとめ

終盤の2009年になってなお新しいルミノシティ記録が生 まれたことが示すように KEKB の運転は最後まで「コミッ ショニング」であり,常に新たな試みが続けられてきた。 KEKBのアップグレード計画であるSuperKEKBは,KEKB 曲線部のビーム光学系(2.5π セル構造)の大部分を保持し, ARES 空洞・超伝導加速空洞を始めとする KEKB の資産を 最大限活用して建設中であり,さらに40倍のルミノシティ・ フロンティアを開拓する挑戦が始まっている。

参考文献

- [1] 加速器第6巻1号, pp.1-95 (2009).
- [2] 船越義裕、「KEKB の最近の性能向上について」、高エネルギーニュース Vol. 28 No. 2, pp. 80-87 (2009).
 「KEKB のルミノシティの最近の進展について」、加速器第6巻3号, pp.222-230 (2009).
- [3] http://www-acc.kek.jp/KEKB/ Commissioing/trend/ peak_trend.jpg
- [4] http://www-acc.kek.jp/kekb/History/index.html
- [5] 船越義裕, private communitaction.
- [6] 福間均,川本崇,「KEKB での電子雲対策」,加速器第6 巻1号, pp. 90-93 (2009).
- [7] 生出勝宣,「KEKB の切り拓いたもの」,加速器第6巻1
 号, pp. 28-34 (2009).
- [8] K. Ohmi *et al.*, Phys. Rev. ST Accel. Beams, Vol.7, 104401 (2004).
- [9] 榎本收志 *et al.*,「KEKB 電子陽電子入射器の 16 年」,加 速器第 6 巻 1 号, pp. 69-75 (2009).
- [10] 菊池光男 *et al.*,「KEKB-HER, KEKB-LER, RF の三リングへの同時入射に成功」,加速器第6巻3号, pp. 231-239 (2009).