超伝導リニアック試験施設棟(STF 棟)の現状と今後

KEK 加速器研究施設 早野 仁 司 hitoshi.hayano@kek.jp 2013年9月4日

1. はじめに

電子と陽電子をできるだけ高いエネルギーまで加速し高 いルミノシティで衝突実験を目指すリニアコライダーでは, より短い距離でできるだけ高いエネルギーに電子と陽電子 を加速し、ナノメートルという極微の大きさまでビームサ イズを絞って衝突させることが要求される。従来のリング 型加速器内で電子を加速していく方式では、その円形軌道 から生じる放射光のためビームエネルギー損失が起こり, さらにエネルギーを上げるためには膨大な加速エネルギー が必要となってしまうので,円形加速器ではその直径を大 きくしていく必要がある。しかし,直線的に加速すれば放 射光が発生せず加速に注ぎ込んだエネルギーがそのままビー ムエネルギーとなるので、次世代の電子陽電子衝突加速器 は必然的に直線加速器になる。リニアコライダー加速器は, そのような直線加速器を2台対向させ、片側から電子を加 速し,もう片側から陽電子を加速し,中央でそれらの衝突 実験を行うものである。リニアコライダー加速器開発では, 比較的短期間の開発で実用化できると考えられる幾つかの 異なる加速方式が世界で並行して開発されてきた。しかし、 その規模の大きさから世界に一つだけ建設するという合意 が世界の研究者の間で形成され、その加速方式を統一する ために, ITRP (International Technology Recommendation Panel)委員会が結成され,2004年8月にその答申が出され た[1]。これにもとづき ICFA が、リニアコライダーの主線 形加速器は超伝導加速技術によると決定し、それを国際リ ニアコライダー: ILC (International Linear Collider)と命 名した。そしてこれ以降、リニアコライダー開発は世界の 研究者が集まった国際設計チーム GDE (Global Design Effort)[2]において統一して行われることになった。GDE で立案された設計開発研究のスケジュールにもとづいて, 2007年8月には基準設計報告書(Reference Design Report, RDR) [3]がまとめられて公開された。その後5年間のさら なる技術開発の後,2013年には工学技術設計書(Technical Design Report, TDR) [4]がまとめられて公開された。これ と並行して、CERNでは、常伝導方式による直線型加速器 として ILC よりも到達エネルギーが高いが実用化には長い 時間を要する CLIC (Compact Linear Collider)の開発が独 立に進められていた。このような状況で、2013年6月から は、ILC と CLIC の活動が融合された LCC (Linear Collider Collaboration)が発足し、国際設計チーム GDE の活動は、 LCC の中の ILC チームに引き継がれ、さらなる R&D と詳 細設計を行っていくことになった。

TDR でまとめられている ILC 加速器は、図1のような 全体レイアウト概念図で示されている。電子源からの電子 ビームは、ダンピングリングによりエミッタンスを下げら れ, 片方の直線加速器の端まで運ばれた後に超伝導加速空 洞による加速により 250GeV まで加速され、中央の衝突点 で5nmという極微のサイズまで絞られて反対側からの陽電 子と衝突させられる。一方、加速器の途中で、加速された 電子から放射光を意図的に作り出しターゲットに当てて陽 電子を生成し、その陽電子は電子と同様にダンピングリン グに導かれ、その後、同様に超伝導空洞により 250GeV ま で加速されて衝突点に導かれる。その中で使われる超伝導 加速技術の仕様は、以下のようなものである。加速空洞の 形状は TESLA 型(ドイツ DESY 研究所において開発され てきた 9 つのセルをもつ加速空洞の形状で、周波数は 1.3GHz)とする。加速電界が電界評価試験において28MV/m (Q。は 0.8×10¹⁰以上)を上回るものを選ぶ。空洞量産化の 目標は、35MV/m以上の性能を出す空洞の製造歩留まりが 90%以上と設定した。加速モジュールに組み込んでからの 加速器としての運転加速電界の仕様は平均 31.5MV/m± 20%(Q₀は1×10¹⁰以上)である。

図1 ILCのレイアウト。

図2に、日本が提案しているかまぼこ型断面の山岳トン ネルを示す。トンネルは2室に仕切られ、電源室に設置さ れたRFパワー源により、加速器室に設置されたクライオ モジュール内の加速空洞を駆動する方式が示されている。 図3に、ILCでの使用が想定されている超伝導加速空洞パッ ケージの一例を示す。ニオブ製の9セル空洞がヘリウムジャ ケット内に収められている。空洞の冷却は、このジャケッ トの内側と空洞の外側の間に超流動液体へリウム(温度2K) を充填することで行う。液体へリウムを供給するための配 管が空洞の上に平行に走ってヘリウムジャケットに接続さ れており、必要に応じて共振周波数を調整するためのチュー ナーが空洞中央部左を取り囲んでいるのが見える。図4に は、この空洞パッケージを9台ないしは8台収めた12m長 のクライオモジュールの概念図を示す。

図 2 日本が提案しているかまぼこ型断面の山岳トンネル を用いた ILC 加速器配置の概念図。

図3 超伝導加速空洞パッケージの概念図。青(周辺部):液 体へリウム、緑(中心部):加速電場の集中する部分を表す。

図4 ILC クライオモジュールの概念図(断面カット図)。

 STF phase-1 開発とそこで整備された設備 ILC という巨大加速器の実際の建設では、約 16000 台と

いう大量の空洞製作と試験,そして約1700台の加速モジュールへの組み込みという本格的な工業的生産ラインが

必要である。しかし、2004 年の時点では ILC がまだ正式 なプロジェクトではなく、そして ILC の超伝導加速技術開 発が完全に終わっていなかった。このような状況で、KEK では、将来日本が ILC をホストする可能性を高めるべく, また、ILC で指導的役割を果たすのに必要な技術的地位を 築くためにも、ILC 超伝導加速技術の確立を目標とした。 すなわち,本格工業化の一歩手前の段階までの基盤設備お よび作業工程を確立し,超伝導線形加速器モデルを実証す ることを目標とした。このため、KEK では、STF(Superconducting RF Test Facility-超伝導加速器 RF 試験設備) を構築し、超伝導加速技術に関連する基盤施設の整備, ILC 加速モジュールの段階的建設と運転、それらを通した人材 育成を行うと同時に,海外研究機関との共同研究拠点とな ることを目指した。STF での開発は、Phase-1 と Phase-2 の2期に分けて行うことを計画した。現在(2013年)は, Phase-2 計画の加速器後段部分の建設期である。

Phase-1(STF phase-1) (2005 - 2008) では超伝導加速技 術の開発に必要な基盤設備の立ち上げを行った。また, ILC 用超伝導空洞の開発と試作、これらを収める横置きクライ オスタット(クライオモジュール)の温度 2K までの冷却, そしてパルス RF 波による動作実験を試験的に行った。実 際には、4台の空洞を組み込むことができる半サイズのILC 型クライオモジュール2台に、タイプの異なる空洞を1台 ずつ据え付け、合計2台の空洞を5MWのL-バンド・パル スクライストロン1台で動作させる試験を行った。次に空 洞4台を据え付けてのクライオモジュール試験、さらには ダミー空洞を取り付けて断熱性能試験および磁場遮蔽試験、 アライメント維持試験を行った。これらを通して、ILC 仕 様に近い超伝導加速モジュールを建設し、それに必要な各 機器の設計・製作・試験の一渡りの経験を積むことができ た。この期間を通して整備された設備は、空洞検査・調整 設備、空洞電解研磨設備、空洞組立用クリーンルーム、空 洞縦測定設備、クライオモジュール組立設備、液体ヘリウ ム冷凍機,大電力 RF パワー設備等である。

Phase-2(STF phase-2)(2009・)では ILC 主線形加速器 のプロトタイプを建設し、ビームを使った運転試験を行う。 これを通して、可能な限り ILC の性能仕様と実装仕様の両 方を満たす各機器の設計・製作・試験に関して、実務経験 を重ねる。そしてこれと並行して、生産技術の工業化を検 討・実証し準備する。

空洞の加速電界の性能限界や,クライオモジュールへの 装着後の性能歩留まりは大きな課題である。しかし,加速 器システムの観点からは,他にも多数の検証を要するもの がある。たとえば,空洞チューナー(周波数の微調整装置), 空洞カプラー(大電力 RF 波入力部分),空洞 HOM カプラー (加速モード以外の Higher Order Mode の RF 波を逃すた めの機構),空洞磁気シールド,クライオスタット,これら に付随する異材継ぎ手や真空シール,熱シールド,マイク ロ波源とその輸送システム,冷凍機,RF制御系,ビーム制 御系などである。加速電界の仕様値達成はSTF加速器シス テム開発の中で行い,加速器システムの建設・運転の中で それらの各技術項目を開発,検証するように計画している。

3. S1-Global クライオモジュール試験

2008 - 2009 年ごろ, ILC のための空洞開発は, アジア(日本, 中国など), ヨーロッパ(主にドイツ), 北米(主にアメリカ)の三領域で並行して進められ, ILC の加速電界仕様を満たす空洞が多数存在していた。そこで, GDE は, ILC の加速電界に近い高性能空洞を世界から持ち寄り, これらを1 台のクライオモジュールで同時に運転する, という提案をSTFに行った。世界のそれぞれのグループでは空洞形状,

入力カップラー,周波数チューナー等において完全に同一 設計を採っているわけではなく, 少しずつ異なった設計で 開発が行われている。そこで、これらの異なった空洞パッ ケージを一つのクライオスタットに収め,同時に運転する, ということは、システム実装のフレキシビィティ、運転上 の経験を相互に理解し積上げる意義が非常に大きいと考え られる。以上の状況をふまえ, STF トンネルへの STF phase-2 加速器据付けが始まるまでの 2 年間のうち後半 1 年間を利用し、この提案を実行することにした。STF phase-1 クライオモジュール A に KEK の空洞 4 台、INFN 製作の クライオモジュール C に DESY の空洞 2 台と FNAL の空 洞2台を装着して、合計空洞8台で1つのクライオモジュー ルを構成し, ILC の運転電界 31.5MV/m を目指す国際協力 計画 S1-Global を KEK がホストすることになった。図5 に、S1-Global の機材配置の概念図および実際のクライオ モジュールの写真を示す。

この試験はSTF phase-2計画にはなかったものであるが, ILC の高電界空洞開発のマイルストーンとして位置づけら れると共に,そこで開発される高電界空洞をSTF phase-2 に使用するためのステップと考えることもできる。これに

図5 S1-Global 試験機器の配置概念図および写真。

使用するクライオモジュールは 2009年12月から組み立て を始め,2010年5月までにSTFトンネルに設置され,2010 年6月から2011年2月までの期間、冷却と実験が行なわ れた。このとき3領域の研究機関からの装置が持ち寄られ, その組立と試験・運転には各領域から研究者・技術者が参 加した。持ち寄られた空洞のクライオモジュール装着前の 性能は平均 30MV/m であり、それらはクライオモジュール 内に装着されてからそれぞれの空洞が独立に試験された後, 7 空洞が同時に運転された。この時の平均加速勾配は 26MV/m であった(図 6)。残念ながら装着後に 2 台の空洞 で周波数チューナーにトラブルが発生したため、合成運転 ではその内の1台を運転から外さざるを得なかった。実証 された性能は ILC 運転時性能の 8 割ほどであったが、ここ では各国の空洞性能の公平な比較が行われ、その評価に大 きな進展があると同時に、共通の性能認識が得られるとい う大きな成果があった。国際協力で行う試験を STF がホス トし,各国の研究者と協力して組立,試験を遂行,さらに はモジュール分解という試験の最後まで国際協力で行えた ことも大きな成果であった。また、この試験の中で日本が 進めているRFパワー分配スキームである分布型RFパワー 源配置の実証試験も行われ,その仕様性能を実証している。 本試験については詳細なレポートが公表されている[5]。

図 6 S1-Global 試験の加速勾配の結果。青(左側):縦測定時の勾配,赤(中央):空洞1台ずつの試験時の勾配,緑(右側):空洞7台の同時運転時のそれぞれの勾配。

4. STF phase-2 プログラムと量子ビーム実験

S1-Global クライオモジュール試験の完了後,STF phase-2の建設に着手しているが、そのSTF phase-2の前 段加速器が完成した直後、ここで得られる電子ビームを利 用して、高品質大強度X線源の原理実証を、外部資金の提 供を得て行なうことになった。この開発課題のタイトルは、 「超伝導加速による次世代小型高輝度光子ビーム源の開発」 というもので、「量子ビーム基盤技術開発」と略称している [6]。この開発では、L・バンドのフォトカソード RF 電子銃 (常伝導空洞を使用)からの高品質電子ビームを2台の9セ ル超伝導空洞(前段加速器)を使って加速する。前段加速器 の下流には大強度のパルスレーザー光蓄積装置を設ける。 前段加速器からの電子ビームと,光蓄積装置の中のレーザー を衝突させることによって,高品質かつ大強度 X 線の発生 を実証するものである。図 7 に,量子ビーム基盤技術開発 実験の概念図を示す。ここに使用した 2 台の加速空洞の性 能は,それぞれ 41MV/m および 35MV/m を達成して,そ れらは短いクライオモジュールに装着された。この量子ビー ム実験は 2011 年内に加速器が建設・設置され,2012 年初 頭より 7 月までコミッショニング運転され,X 線生成実験 は 2012 年 9 月から 2013 年 3 月まで行われた。

図7 量子ビーム加速器の概念図。フォトカソード RF 電子 銃と捕獲クライオモジュール(右上)により得られる50MeV の電子ビームとレーザー光蓄積装置(左下)内のレーザーと の衝突により大強度高品質 X 線を発生させる。

電子ビームを小さく絞りレーザーとの衝突を効率よく行 うには、超低エミッタンス電子ビームが必要である。これ にはフォトカソードを使用した常伝導のLバンド RF 電子 銃を使用する。この電子銃によりパルス運転する超伝導加 速空洞のビーム加速に適した1msトレイン長の大電流の超 低エミッタンス電子ビームを生成することができる。Cs₂Te フォトカソードは電子銃空洞に背後から挿し込むタイプの モリブデンカソードブロックの表面に蒸着される。蒸着チェ ンバーなどのフォトカソード生成システムは電子銃空洞の 背後にコンパクトな設計で配置され、加速器の小型化に十 分に配慮している。電子ビーム生成のためフォトカソード に照射される量子ビーム用レーザーは162.5MHzの繰り返 しで波長 266nm、パルス幅 12ps を持ち、1msのトレイン 長のバーストを 5Hz の繰り返しで生成する。このフォトカ ソードは運転中に 0.2-0.5%程度の量子効率を維持できる。

2012年4月のビームコミッショニングの後,7月までの 3ヶ月の間,大電流ビーム加速を行うための加速器調整が 行われた。この間に行われた開発は以下の通りである。ま ず,RF電子銃空洞へのRFパワーの安定化にはデジタル フィードバックが適用され,その安定運転のための制御パ ラメーターの最適化が図られた。そして,RF電子銃のフォ トカソードに入射するレーザーの入射RF位相に対する安 定化, 1ms にわたる強度フラット化も時間をかけて最適化 が図られた。引き続く加速を行う超伝導加速空洞の RF 振 幅と位相の安定化もデジタルフィードバック技術の最適化 が図られた。1ms トレイン長にわたる電子ビームを RF 電 子銃から取り出し,超伝導加速空洞により 40MeV まで加 速できた。バンチ電荷は 15pC であり,バンチ数が全部で 162448 あるので,総電荷量は,2437nC と大電流である。 その後,加速器からのビームロスによる放射線漏洩が計測 され,漏洩が基準値を満たすように,ビームパイプチャン バーの改造や放射線シールドの増強,漏洩箇所の同定と対 処など,さまざまな処置が講じられた。その結果,このよ うな大電流加速器の運転が可能となった。

電子ビームとヘッドオン衝突で X 線を生成するレーザー 蓄積器は 4 つの高反射率のミラーから構成されている(図 8)。それらのミラーの内, 2 枚は平面ミラー(やや円筒形状 になるように歪がかけられている)であり,2枚は凹面ミラー である。内部の共振器長(ミラー間隔)は, ちょうど 162.5MHz で発振され入射されるレーザー(波長 1064nm, パルス幅 10ps)を蓄積できるような共振条件を満たす長さ に nm 以下の精度で設置する必要がある。このため,4 つ のミラーは高精度に調整できるムーバーにマウントされ, 内部が真空に保たれなければならないので,大気圧の影響 を受けずに微調整ができるようにミラーの前後はベローズ チェンバーで力がかからない構造となっている。衝突点に はワイヤースキャナー,スクリーンモニターが配置され, 衝突ビームサイズがモニターできるようになっている。

図8 大強度高品質X線を発生させるための4ミラー・レー ザー蓄積装置。

X線生成のため衝突点でビームを絞る必要があるが、ビー ムエミッタンスと衝突点のビームサイズの調整の結果、ビー ムサイズは36µm 程度まで絞ることができた。このビーム を使用した X線生成試験は、2012年11月から2013年3 月に行われた。MCP(Micro-Channel Plate)とSOI(Silicon On Insulator)で構成されたX線検出器が、衝突点の下流側 に配置された。レーザー蓄積器のレーザー位相と加速器ビー ムの位相は、意図的にそれらの周波数がずらされているた

め、データ取得タイミングが0から360度の位相の全てに おいて行える(位相スキャン)。ビーム通過に同期したデー タ取得は、レーザー蓄積器に溜まったレーザー強度、その 時のビーム強度,X線強度,位相ずれの情報を一括して取 れるように構成してある。レーザー蓄積がきちんと起こり, ビーム強度が強い時の、位相とX線信号とをプロットすれ ば、どの位相で衝突が起きているかを同定できるはずであ る。レーザー蓄積器は、ミラー同士の機械的振動による揺 れを抑制するために,差し渡しのステンレス製のビーム板 を用いて, マイクロメーターヘッドによりミラーホルダー を機械的に固定した。また、光学テーブルも補強板を差し 渡したりして床からの振動が光学系に伝わりにくいような 対策を施した。さらに、電子銃からのビーム軌道を安定化 させるために, RF 電子銃用レーザーには, 0.01℃で精密 温度調整できる空調機を導入し,また位相安定化回路も外 付けし、衝突点の電子ビーム軌道ドリフトを低減させた。 2013年3月の実験では、これらの改善の結果、図9に示す ように X 線生成が確認でき, 2013 年 3 月で終了した「超 伝導加速による次世代小型高輝度光子ビーム源の開発」は、 最後の段階で原理確認を達成することができた。

図 9 MCP(Micro-Channel Plate)検出器により, 位相ス キャン中に検出できた X 線の信号エンハンス。

5. STF phase-2 プログラムの今後

ILCでは、9セル超伝導空洞を9台内蔵する、長さ12.7m の長尺クライオモジュールを約1700台必要とする。この ILC クライオモジュールの概要設計は Technical Design Report(TDR)に記述されているが、より詳細な技術設計を 進めると同時に、世界三領域でクライオモジュールの生産 を行う際の互換性仕様(プラグコンパチビリティ[7])の具体 化を行なっていく必要がある。STF phase-2加速器の前段 部分(RF電子銃と9セル空洞2台)は2009年から2011年 の間に量子ビーム加速器として建設され、2012年にビーム 加速とX線生成の試験を行った。これに並行して、ILCク ライオモジュール(CM-1)に装着する加速空洞の製造・試験

を行い、2013年9月からSTFトンネルの最下流部でモジュー ル組み立て設備を装着し、そこで8台の空洞と1台の超伝 導四極電磁石の連結組立が進行中である。STF のクリーン ルームとクライオモジュール組立設備は、建物の広さの関 係で4空洞モジュールを組み立てるものであり、9空洞あ るいは8空洞+電磁石を組み立てることができない。地上 部にあるクリーンルームとクライオモジュール組立設備で は、4 空洞の連結のみを行い、長いスペースを確保できる 地下トンネルを利用して、2組の4空洞連結ユニット同士 の接続を行い,その連結部に超電導四極電磁石を据え付け, ILC クライオモジュール CM-1を構成する方式とした。CM-1 の後ろには、さらに1台の4空洞クライオモジュール (CM-2a)を連結して、全体として一体とする計画である。 冷却用コールドボックスと接続の後,まず 2014 年夏に, CM-1+CM-2a の冷却試験運転およびローパワー試験を行 う予定である。2014 年にこれらのクライオモジュールに RF パワーを供給する導波管システムを構築し,2015 年初 頭には大電力試験を行って、それまでの間にビームライン を整備して、2015年中頃には加速器としての総合運転を行 なうことを構想している。なお、これらクライオモジュー ルの運転には、ILC で使用が想定されている 10MW マルチ ビームクライストロンを使用する。図 10 に, STF phase-2 加速器の全体構成図を示す。

図 10 STF2 加速器の構成概念図。左から,フォトカソー ド RF 電子銃,捕獲クライオモジュール,2 台の ILC 型ク ライオモジュール CM1, CM2・a (半サイズ)から構成される。 この時点でのビームエネルギーは 418MeV, 1ms 内に 2500 バンチ,繰り返し5Hz で運転される。ILC型クライオモジュー ル内の超伝導空洞に供給する RF パワーは 10MW マルチ ビームクライストロン1台によってまかなわれる。

STF phase-2 加速器に使用する加速空洞 14 台の内, 11 台の高電界試験, さらに R&D 空洞 2 台の高電界試験が終 了している現時点での性能一覧を図 11 に示す。平均加速電 界は 37MV/m であり, ILC の仕様値 35MV/m を上回った 台数の割合(歩留まり)として 92%が得られている。

図 11 STF2 加速器に使用される予定の超伝導加速空洞, および開発途中の超伝導加速空洞の性能。平均加速勾配は, 36.9MV/m である。

6. 産学連携拠点事業との連携

STFにおける超伝導加速技術の開発に関連して、地域資源等を活用した産学連携による国際科学イノベーション拠点整備事業「地球を守るアース・クリーナー市場を創出する新産学連携拠点」[8]が平成24年度(2012年度)に採択された。この「アース・クリーナー拠点事業(略称)」では、地球を人類の永久の生存圏と可能ならしめるために、「地球汚染」「地球温暖化」「エネルギー不足」「自然資源枯渇」の問題克服が必須であると考え、超伝導加速器技術と量子ビーム技術を応用することで、「新エネルギー輸送・変換」や「発電と河川・大気浄化の融合」などの「地球を浄化する」ニーズに対応する。この事業では、産業界から6社が参加し、KEKおよび大学連合とのアンダーワンルーフの体制を構築し、「地球を浄化する」技術とその事業化、市場拡大を促進し、「永久生存圏:地球を守る」課題の実現に挑戦する。

「アース・クリーナー拠点事業」では、STF 棟の北側に 新設される新産学連携棟において、知財管理の観点から各 企業のクローズエリアを設け、全社がオープンスペースで 議論できる会議室を設けるという運営を行う計画である。 新産学連携棟(超伝導加速器利用促進化推進棟)には、オー プンスペース、クローズエリアの他、超伝導加速器技術開 発を産学連携で行うための設備であるヘリウム冷凍機、電 解研磨設備,縦測定設備、9台の空洞組立に対応したクリー ンルーム、ILC型クライオモジュール(9台の空洞を内蔵) に対応したクライオモジュール組立設備,横測定設備を2013 年度中に設置する計画である(図12)。これらによるクライ オモジュール開発と STF phase-2 加速器との連携により、 超伝導加速器技術は飛躍的に進展するものと期待できる。

7. まとめ

STF 棟では、ILC 加速器技術の中心となる超伝導加速技術の開発が行われており、現在は STF phase-2 計画の STF 加速器後半部分の建設を遂行中である。基本的な超伝導加速基盤設備は整備・高度化され、それによる超伝導加速空

Superconducting Accelerator Development Hall (2014)

図12 新産学連携棟(超伝導加速器利用促進化推進棟)の設備配置図(計画図)。

洞の性能は,ILCの目標である加速電界 35MV/m を 90% 以上の歩留まりで達成している。その開発に,新たに新産 学連携棟の設備も加わる予定であり,今後の開発スピード はさらに向上するものと期待できる。STFトンネルには, ILC超伝導加速技術で構築する STF加速器が建設中であり, その高電界運転,ビーム加速運転を通して,ILC加速器の 建設のための技術蓄積と人材育成の準備が整いつつある。

8. 謝辞

STF 開発計画の立案, 策定, 建設, 整備, 実行に際しま して, STF メンバーはもとより大学・研究所関係の多数の 方々および多数の企業の方々のご協力をいただいておりま す。また, KEK 機構長 鈴木厚人先生, 研究担当理事 岡田 安弘先生, LC 推進室長 山本明先生からは常に大局的見地 からのご指導をいただいております。そして KEK 加速器 施設長 生出勝宣先生, KEK 加速器施設第6研究系主幹 山 口誠哉先生には,本設備の人員・予算・設備支援などの面 で,多大なご支援をいただいております。ここに深くお礼 を申し上げます。

参考文献

- [1]http://www.fnal.gov/directorate/icfa/ITRP_Report_Final.pdf
- [2]http://www.linearcollider.org/cms/
- [3]http://www.linearcollider.org/cms/?pid=1000437
- [4]http://www.linearcollider.org/ILC/Publications/Technical-Desi gn-Report
- [5]http://www-lib.kek.jp/cgi-bin/kiss_prepri.v8?KN=201324003
 &OF=8
- [6] http://kocbeam.kek.jp/project/index.html
- [7]http://newsline.linearcollider.org/2012/10/18/s1-global-a-plug -compatible-ilc-demonstration-experiment/
- [8]http://www.mext.go.jp/b_menu/houdou/25/03/1331514.htm