T2K実験 2016年夏のハイライト

京都大学高エネルギー物理学研究室 市川温子 ichikawa@scphys.kyoto-u.ac.jp ロチェスター大学 岩本康之介 kiwamoto@pas.rochester.edu KEK素粒子原子核研究所 坂下健 kensh@post.kek.jp

2016年(平成28年)11月14日

1 イントロダクション

T2K(東海-神岡間長基線ニュートリノ振動実験)では, 茨城県東海村にある J-PARC 大強度陽子加速器を用い てミューニュートリノを大量に生成し, 295km 先の岐阜 県飛騨市神岡にあるスーパーカミオカンデに向けて飛 ばし,飛行中に起こるニュートリノ振動について研究し ている。これまでの高エネルギーニュースでもいくつ か機会を頂き, T2K 実験の研究について紹介してきた [1, 2, 3, 4, 5]。

T2K 実験では、2013 年までにミューニュートリノか ら電子ニュートリノが出現することを確立し[6],2014 年から今年 (2016年) の夏まで反ニュートリノビームを 生成して実験を進めてきた。ニュートリノと反ニュート リノで(反)電子ニュートリノの出現確率が異なれば、ク オークにおける小林益川モデル以外で初めて CP 対称 性の破れが見つかったことになる。三世代間の振動の枠 組では, CP の破れを通常 CP 位相 δ_{CP} で導入するが, この値によっては最大27%の非対称があることがわかっ ている。反ニュートリノビームで蓄積した積分陽子数 (Protons-On-Target, POT) は, 2010 年から 2013 年の ニュートリノビームデータとほぼ同等の 7.5 × 10²⁰ 個 となった。途中で大震災による運転停止期間等があった とはいえ、約2年間でこれだけのデータ量が蓄積できた のは、ビーム強度が上がっているためである。本記事で は,2016年前半の運転よもやま話,夏のリリースハイラ イト, そして T2K phase II に向けた展望を紹介する。

2 運転よもやま話

図1に T2K 実験が物理データを取り始めた 2010 年 1月から 2016 年 5 月までのビーム強度と積分陽子数の プロットを示す。

図 1: T2K 実験のこれまでのビーム強度と積分陽子数。

2015年5月までの運転の終盤に,ニュートリノ生成標 的を冷却するヘリウム配管から微量ながらもヘリウムの リークが観測された。曲げた配管の残留応力がビーム運 転による温度上昇で解放され,セラミック接合部が損傷 されたと推察された。標的を共同開発した RAL グルー プが急遽,デザインを変更した配管を製作し,TRIUMF のリモートメンテナンスの専門家の協力のもとマニピュ レータ等を用いて損傷した配管を交換した(図2)。でき る限り早期の運転再開を目指した関係者の懸命の努力で 2016年1月からの運転再開にこぎつけた。

加速器ビーム強度 300kW~350kW で運転が再開され たが、メインリング (MR) 偏向電磁石の1台で層間短絡 が生じて急遽, 地上にある同仕様の磁石と入れ替えたり

図 2: 標的冷却ヘリウム配管を交換するときの様子。

(35 トンの磁石の入れ替え作業!), MR 電磁石電源のト ランスに小動物が侵入して 1 次側が短絡したり, ニュー トリノでは地下の高放射線環境に設置したネットワー ク機器の暴走で制御ネットワークがダウンしてビーム運 転できなくなったり, といろいろあった。しかし最終的 にはビームパワー 425kW での運転が達成できた。この ビームパワー増強は, 加速器の方々の多大なる努力の結 果である。

現在, J-PARC MR のビーム強度を制限しているのは ビームロスである。MR のコリメーターの許容ロス容量 や機器メンテナンスを考えたときの残留放射線上限か ら,許容できるビームロス量が決まる。そのためビーム 強度を上げるためには、ビームロスを十分小さく減らす 調整が必要となる。今後の MR ビーム強度増強にむけて ビームロスが生じている原因をひとつずつ理解すること も重要であり、加速器グループでは MR 加速器のモデル 構築とそのモデルシミュレーションにもとづいたビーム スタディが行われている。今回の運転期間でも、そのよ うな方法でビームロスの原因理解と低減を実現した。こ の取り組みについては、加速器グループと実験グループ の間で何度も議論の機会を持って、わかりやすく説明し ていただいた。ロスの原因についての考察とシミュレー ションスタディから考えられるその対策について説明を 聞いたあとに加速器の方々のビームスタディを見ている と、 (スタディの専門的なところまで理解できていない が)MR 加速器の理解が深まっていく様子が分かり, 楽 しい経験であった。

今後も T2K 実験にとってビーム強度増強は運転時間 とともに重要である。現在のビーム強度 425kW は,繰り 返しあたりの陽子数では 2.2×10¹⁴ になる。これは陽子 シンクロトロンでは世界最高値である。J-PARC MR で は、2018 年度に加速器繰り返し時間を現在の 2.48 秒か ら 1.3 秒に,またその先には 1.1 秒まで短くする計画で, それに対応した新しい電磁石電源を現在試験中である。 1.3 秒繰り返しになれば,現在の陽子数で既に MR ビー ム強度の初期設計値である 750kW 以上になっているが, 今後も繰り返しあたりの陽子数をビームロスを低減しな がら徐々に増やしていく。現在の計画では 3.2×10¹⁴ ま で陽子数を増やして,2025 年ごろまでに 1.3 MW のビー ム強度を目指す。

3 反ニュートリノデータを加えた最 新結果

ここでは, 2016 年夏までに取得した 7.48 × 10²⁰POT のニュートリノと 7.47 × 10²⁰POT の反ニュートリノの 全データを用いた解析の説明をする。

振動解析は,スーパーカミオカンデ (SK) で予測される ニュートリノ事象数と,それらのエネルギースペクトル や運動量・散乱角分布を,実際に SK で観測されたニュー トリノ事象のものと比較することによって行われる。予 測には不定性を考慮しなければいけないのだが,外部実 験データをもとに構築されたニュートリノフラックスの 予測,ニュートリノ原子核反応モデルに,前置検出器の 測定結果を反映させることで,より正確にSKでのニュー トリノの事象を予測している。前置ニュートリノ検出器 の測定及びSKでのニュートリノ事象選択の詳細は過去 の記事 [4] を参照していただきたい。

SK での観測事象のうち消失現象を測定する ν_{μ} サンプ ルは混合角の関数 sin² 2 θ_{23} と質量固有値二乗差 Δm_{32}^2 に感度がある。 ν_e サンプルは出現現象でありその出現確 率は θ_{23} , Δm_{32}^2 の他に sin² 2 θ_{13} の関数となる。それだ けではなく、さらに三世代の振動の干渉項として sin δ_{CP} に比例する項が加わり、ニュートリノと反ニュートリノ で出現確率に違いが出る。

これまでの解析では、ニュートリノビームで得られた データから ν_{μ} 事象、 ν_{e} 事象を選択し、同時にフィット することで振動パラメータを決定してきた。今回の解 析では、さらに反ニュートリノビームのデータも加えて 同時にフィットを行った。表1は反ニュートリノビーム での選択現象に対する系統誤差をまとめたものである。 ニュートリノビームでの誤差も、大まかには同じような 大きさである。

誤差要因	$\overline{\nu}_e$	$\overline{ u}_{\mu}$
	$\delta N/N$	$\delta N/N$
ニュートリノフラックス × 断面積	3.22%	3.26%
(前置での測定後)		
断面積	4.32%	4.13%
(前置で測定できないもの)		
SK 検出器および	3.95%	3.90%
終状態粒子のハドロン反応		
全体	6.19%	5.22%

表 1: 反ニュートリノビームでの事象数予測に対する系 統誤差。

	$\nu_{\mu} \rightarrow \nu_{e}$	$ u_{\mu} \rightarrow \nu_{\mu} $	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}$
$\delta_{\rm CP} = \frac{-\pi}{2}$	28.7	135.8	6.0	64.2
$\delta_{\rm CP}=0$	24.2	135.5	6.9	64.1
$\delta_{\rm CP} = +\frac{\pi}{2}$	19.6	135.7	7.7	64.2
$\delta_{\rm CP}=\pi$	24.1	136.0	6.8	64.4
観測数	32	135	4	66

表 2: ニュートリノビームと反ニュートリノビームで期 待される事象数と実際に観測された事象数をまとめたも の。

3.1 標準的な振動解析結果

ニュートリノの CP 位相 (δ_{CP}) として4つの異なる 値を仮定した場合に SK で期待される事象数と,実際に 観測された事象数をまとめたものが表2である。期待さ れる事象数はいずれも順階層の質量順序¹を仮定した場 合のものである。7.48×10²⁰POT のニュートリノビー ムのデータに対し, SK で実際に観測された ν_{μ} 事象数は 135, ν_{e} 事象数は32で,7.47×10²⁰POT の反ニュートリ ノビームのデータに対し, SK で実際に観測された $\bar{\nu}_{\mu}$ 消 失事象数は66, $\bar{\nu}_{e}$ 出現事象数は4であった。それぞれ の観測結果を,振動がない場合および振動の最尤推定点 でのエネルギーの分布と比較したものが図3,4である。

主には $\nu_{\mu}/\overline{\nu}_{\mu}$ 消失現象で決まる $\sin^2 \theta_{23}$ と Δm_{32}^2 に対する T2K の解析結果を,他の実験の結果と比較したのが図 5 である。T2K の最尤推定点は $\sin^2 \theta_{23} = 0.532$,

図 3: SK で観測された v_µ/v_µ 消失事象(誤差棒つきの
 点)のエネルギー分布。,ニュートリノ振動がない場合
 と振動の最尤推定点での予測が重ねられている。下の図はニュートリノ振動がない場合との比。

¹ニュートリノの3つの質量固有値が $m_1 < m_2 < m_3$ の場合を 順階層、 $m_3 < m_1 < m_2$ の場合を逆階層と呼ぶ。どちらかはまだわ かっていない。質量順序によって地中を飛行する間に物質から感じる ポテンシャルが異なるため振動確率が影響を受ける。

図 4: SK で観測された $\nu_e/\bar{\nu}_e$ 出現事象(誤差棒つきの 点)のエネルギー分布。,ニュートリノ振動がない場合 とおよび振動の最尤推定点での予測が重ねられている。 下の図はニュートリノ振動がない場合との比。

 $\Delta m_{32}^2 = 2.545 \times 10^{-3} \text{eV}^2/\text{c}^4$ であった。図 5 には SK 大 気ニュートリノ測定 [7], MINOS+実験 [8], NO ν A 実験 [9], IceCube 大気ニュートリノ測定 [10] の信頼領域も示 した。いずれも 90%信頼度で無矛盾であるが, NO ν A の 最尤推定点は最大混合 45°からずれていて興味深い。今 後数年、T2K と NO ν A で精度を上げていった時にどう なるのか楽しみである。

CP 位相の解析結果も見てみよう。 $\sin^2 \theta_{13} \ge \delta_{CP}$ に 対する信頼領域と最尤推定点を示したものが図 6 であ る。質量順序について、順階層と逆階層をそれぞれ仮定 して解析を行い算出した信頼領域と最尤推定点が示して ある。ニュートリノの測定だけでは、 δ_{CP} を一意的に決 めることはできないが,反ニュートリノの測定を加えた ことで δ_{CP} の値が緩いながらも制限されている。原子 炉実験からの $\sin^2 \theta_{13}$ に対する制限($0.085 \pm 0.005[11]$) が影がつけられた領域で示されている。T2K の解析結 果は原子炉実験のそれとの一貫性が見られる。

図6を見ても分かるように,原子炉実験による θ_{13} の 測定精度が非常に高い。そのため,原子炉実験による

図 5: $\sin^2 \theta_{23} \ge \Delta m_{32}^2$ に対する信頼領域と最尤推定 点(黒線・点)。比較のために SK 大気ニュートリノ, MINOS+実験, NO ν A 実験, IceCube 実験の結果も示 す。

値を用いて, δ_{CP} にさらに制限をかけることができる。 正確には、CP 位相の項は三世代振動の干渉項として現 れるので、太陽ニュートリノおよび原子炉ニュートリノ (カムランド) 測定で決められた θ_{12} , Δm_{21}^2 , 短距離原子 炉ニュートリノの測定で決められた θ_{13} , そして T2K の ν_{μ} 消失で主に決まる θ_{23} , Δm_{32}^2 のすべての情報を使っ て, ν_e 出現を解析することで,残る δ_{CP} に制限がかか る。そうして得られた δ_{CP} の解析結果が図 7 である。図 7 には 90%の信頼度の領域に相当する $\Delta \chi^2$ の値が示さ れており,その領域は質量順序が順階層と逆階層の場合 それぞれで [-179°, -22°], [-120°, -42°] であった。つ まりこの結果は, CP 対称性の破れを 90%の信頼度で示 唆している。

今回の、 $\nu_e/\bar{\nu}_e$ 出現がニュートリノで多めに、反ニュートリノで少なめにでているという結果は質量順序について順階層を好んでいることを示しているが、事後確率としては順階層が 75%、逆階層が 25% という結果であった。

3.2 ν_{μ} と $\overline{\nu}_{\mu}$ 消失現象の解析

反ニュートリノモードの統計の向上に伴い, $\nu_{\mu} \geq \overline{\nu}_{\mu}$ 消 失現象の独立解析を更新した。 $\sin^2 \theta_{23} \geq \Delta m_{32}^2$ をニュー トリノビームと反ニュートリノビームで独立に扱い消失 現象の解析結果を比較する。CPT 定理により消失事象は ニュートリノと反ニュートリノで厳密に同じでなければ ならず、違いが見つかれば CPT の破れないし、地中の 物質との標準理論を超えた相互作用があることを示す。

図 8 はニュートリノビームおよび反ニュートリノビー ムそれぞれのデータで求めた $\sin^2 \theta_{23} \ge \Delta m_{32}^2$ に対する 信頼領域と最尤推定点を示す。SK 大気ニュートリノ測 定 [13] と MINOS 実験 [14] の反ニュートリノに対する信

図 6: $\sin^2 \theta_{13} \geq \delta_{CP}$ に対する信頼領域(線)と最尤推 定点(点)。質量順序の順階層(黒)と逆階層(赤)の それぞれの場合について表示している。原子炉実験から の $\sin^2 \theta_{13}$ に対する制限(0.085 ± 0.005[11])が影がつ けられた領域で示されている。

図 7: 太陽ニュートリノおよび原子炉ニュートリノの測 定結果も用いて T2K 実験で得られた δ_{CP} の $\Delta \chi^2$ 分布。 順階層(黒)と逆階層(赤)の質量順序それぞれを仮定 した結果を載せている。Feldman-Cousinsの方法 [12] を 用いて得られた δ_{CP} の 90%信頼領域(垂直線内の領域) を示す。

頼領域も示してある。前回の解析結果 [1] と同様, ニュー トリノと反ニュートリノで振動パラメータの有意な違い は観測されなかった。

4 CP 対称性の破れの 3σ 発見を目指 して

長基線加速器ニュートリノ振動実験によって、レプト ン・セクターの CP の破れを測定する可能性が真面目に 議論され始めたのは 1999 年頃である。その時点では、こ の記事の著者は全員学生 (小学生を含む) であった。当

図 8: $\sin^2 \theta_{23} / \sin^2 \overline{\theta}_{23}$ と $\Delta m_{32}^2 / \Delta \overline{m}_{32}^2$ に対する信頼領 域と最尤推定点(紫/黒 線・点)。比較のために SK 大 気ニュートリノ, MINOS 実験の反ニュートリノに対す る結果も示す。

時,T2K実験初代実験代表者の西川公一郎氏から"電子 ニュートリノの出現を捉えることができたら,ハイパー カミオカンデを作って CP の破れを測ろう!"と言われ たことを著者の一人は覚えている。当時の予想では,CP の破れを"discover"するにはハイパーカミオカンデが 必須と考えられていた。これは今でも正しいが,もしか すると,その前に,"evidence"が見える可能性が出てき た,というのが最近のT2K実験の示す所である。

ここまでのセクションにあるように、CP 位相、質量 の順序ともに、自然は $\nu_{\mu} \rightarrow \nu_{e}$ を好み、 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ を抑制 しているように見える。まだまだ統計が足りずぬか喜び の可能性はあるが、もしその通りに CP 対称性が最大に 破れていて,T2K 実験を数年延長することで CP 対称 性の破れの"evidence"が見えるのであれば、見ない手が あろうか,いやあるまい。次世代長基線加速器ニュート リノ振動実験であるハイパーカミオカンデ計画や米国の DUNE 計画が走り始めるのは、早くても 2026 年頃であ る。T2K 実験をその頃までに延長して、"evidence= 3σ での発見"に手を届かせるためにはどうすればいいであ ろうか,というような議論が 2015 年にグループ内で始 まった。日本のニュートリノ振動実験の戦略としても, ハイパーカミオカンデが稼働する頃に速やかに J-PARC 加速器を大強度化するには、空白期間を設けずに加速器 を運転、向上しつづけることが重要でもある。

4.1 何が必要か?

CP が最大限に破れていて ($\delta_{CP} = -\pi/2$) 質量順序が 順階層という幸運な場合に, CP の破れを 3σ で測定す るには,単に T2K 実験をハイパーカミオカンデが完成 する 2026 年まで延長すればよい,というものではなく, かなり野心的な"向上"が必要なことがすぐにわかった。 そこで,T2K phase II として,我々が提案するのは,以 下の通り [15]。

- 現状 425 kW の J-PARC MR 強度を段階的に
 1.3 MW まで増強する!
- 電磁ホーンの電流を現在の 250 kA から 320 kA!に 増強してニュートリノの収量を 10%増やす。
- スーパーカミオカンデの事象選択のアルゴリズムを 改良し、使える事象数を40%増やす!
- 系統誤差を現在の2/3に削減する!(6%程度を4%程度に減らす)

どれも,やれるならさっさとやってるでしょ,今やれて いないのはできないからでしょう,と突っ込まれそうな 項目である。が,これらは現在の制限が何で決まってい るのかを綿密に吟味して立てた目標である。

加速器の強度に関しては,加速器グループと実験グ ループで議論を重ね,加速器グループから『これならば 努力目標として一緒にがんばります』という線で作られ たシナリオが図9である。現在進んでいる主電源やRF 空洞の更新,ビームロスの低減を見込んでいる。

J-PARC MR Expected Performance

図 9: 想定している J-PARC MR のビーム強度とデータ 取得のシナリオ。積算取得データ量を POT(標的に入射 する陽子の数) で表している。

ニュートリノビームラインでは、ビームパワーの増強 に対応するため、データ収集系やモニターのアップグ レード、冷却能力の増強などに加えて、電磁ホーンの電 流を 250 kA から 320 kA に増やすことを検討している。 そのために主には電源周りを増強する。ローレンツ力に よって電磁ホーンにかかるストレスは電流の2 乗に比例 するため装置が耐えられるかどうかを見極めながらあげ ることになる。ニュートリノの収量の増加は 10%程度で はあるが, wrong sign 背景事象 (反ニュートリノビーム に混じっているニュートリノ)の混入を低減できる。

現在のSKの事象選択では、事象再構成の精度を保つ ために反応点の位置が PMT 壁から2メートル以上とし ている。これで、PMT 内側の体積のうち 31%が標的質 量から除外されてしまう。壁近くで反応した場合でも, 出てくる粒子が壁から遠ざかる方向であれば、再構成の 質はそれほど落ちないだろうと期待されるため、反応点 の位置のカットをリングの方向によって変えることが検 討されている。また,再構成されたチェレンコフリング が1個であることを要求しているし、電子ニュートリノ 事象選択ではさらに、遅れてでてくるミューオン崩壊か らの電子の検出数を0個としている。この場合,電子 ニュートリノ事象だとしても荷電カレント反応でπ粒子 を出すような事象が除外される。事象の再構成アルゴリ ズムを改良することで,このような事象も,背景事象か ら区別して選び出せれば、検出効率を最大35%向上する ことができる。合計で40%の統計増を見越しているが、 これらが可能かどうかは、これからの解析の腕の見せ所 である。

系統誤差に関しては、現状,SKの検出効率の系統誤 差、π粒子のハドロニックな反応の不定性,前置で測定 後も残るニュートリノフラックスとニュートリノ反応の 不定性,前置で測定できていないニュートリノ反応の不 定性が,ほぼ同じくらいの割合で寄与していて、多面的 に攻めていく必要がある。ニュートリノフラックスやπ のハドロニックな反応については、外部データを使って (あるいは必要があれば外部データを新たに取る!)低 減を目指す。SKや前置での測定についても、キャリブ レーション法を改良するなどして不定性を減らす。さら に前置検出器を大々的にアップグレードしよう、という 議論も始まっている。

4.2 期待される感度

4.1 に述べた努力をして得られる感度が図 10 である。 これは、質量順序が順階層の場合の図で、逆階層の場合 には、 $\delta_{CP} = 0$ で反転したような図になる。2026 年頃 には、質量順序が他の実験で決められている可能性が高 い。その場合、例えば $\sin^2 \theta_{23} = 0.5$ の場合で、 δ_{CP} の 36%の領域で CP 対称性の破れを 3 σ で観測することが 期待される。

また,混合角 θ_{23} に関しては,現在の測定結果は $46 \pm 3^{\circ}$ [16] と最大混合に近く,そこからのずれが見えるかどうかが焦点となっている。図 11 は, $\sin^2 \theta_{23} = 0.6$ すなわち $\theta_{23} = 51^{\circ}$ の場合に期待される 90%C.L. 領域で,最大混合からのずれが見える可能性がある。 θ_{23} の測定精度としては $0.5^{\circ} \sim 1.7^{\circ}$, Δm_{32}^2 に関しては1%程度が

(b) 質量順序がわかっている場合の感度。

True δ_{CP}(°)

図 10: T2K Phase II の CP 対称性の破れに対する感度。 横軸は, CP 位相の値。質量順序として順階層の場合の 図。図 (a) は質量順序がどちらかわかっていない場合の 感度。図 (b) は,他の実験等で質量順序が決められた場 合の感度。

期待される。

ここまで紹介した感度は,標準理論に新しく加わる のが三世代間のニュートリノ振動のみであると仮定し た場合である。実際, CP の破れの測定も, 厳密にいう と太陽ニュートリノおよび原子炉ニュートリノによる *θ*₁₂, *Δm*₂₁, *θ*₁₃ の値を用いた上で, T2K の観測値から $\theta_{23}, \Delta m_{32}^2, \delta_{\rm CP}$ をフィットし、 $\delta_{\rm CP}$ の値の0ないし π か らのずれという形で導出している。しかし,加速器ニュー トリノ振動による(反)ミューオンニュートリノ消失, (反)電子ニュートリノ出現の測定の精度が上がれば,三 世代振動の枠組を超えた冗長な測定が可能となる。例え ば、原子炉の測定により決められた $heta_{13}$ とは独立に、加 速器ニュートリノの測定で θ₁₃ を決定し比べることで三 世代振動のテストが可能となる。つまりクオークにおけ るユニタリーのテストに相当するようなテストが可能 となる。また、ミューオンニュートリノの消失をニュー トリノと反ニュートリノで比較し,違いが見つかれば,

図 11: $\sin^2 \theta_{23} = 0.6$ の場合に期待される 90%C.L. 領域。

CPT の破れ,ないし(反)ニュートリノと(通過中の地 球の)物質との標準理論では説明できない相互作用があ ることを示す。T2K の phase II の感度は限られており, 高精度の測定はハイパーカミオカンデを待たなければな らないが,ニュートリノでは,びっくりするほど大きな 新現象があることが過去にはあったので,案外,T2K で 見つかったり,ということもあるかもしれない。

5 まとめ

多くの人の多大な努力で J-PARC MR は 425 kW の ビーム強度を達成した。ここまで長い道のりであった し、20年に渡ってスーパーカミオカンデの超高性能を 維持するのも大変であったと思う。2016年夏の結果は CP の破れが見え始めてきたことを示しているのかもし れないが、それを確認するには、まだまだ長い期間と努 力が必要である。長く続けている人間にとっては、装置 の高い性能を維持する努力をしつづけるということが一 番、難しいのかもしれない。さらに、750 kW を超えて 1.3 MW を達成し、また 50%の解析効率の向上をする には多くの課題を解決せねばならず、腕試ししてやろう という若い人の参入も必要だと思う。CP の破れの発見 には着実に近づきつつあり、また未だ冗長で精密な測定 がなされていないニュートリノについては、標準理論を 超えているニュートリノ振動現象をさらに超えた現象が 手の届く所にあるかもしれない。ぜひ、一緒にやりませ んか?

参考文献

- 平木貴宏,田中秀和, Christophe Bronner,高エネ ルギーニュース 34-2, 89 (2015).
- [2] 池田一得, 市川温子, Megan Friend, 高エネルギー ニュース 32-4, 260 (2014).

- [3] 亀田純, 南野彰宏, 高エネルギーニュース **32-4**, 255 (2014).
- [4] 西村康宏, Mark Hartz, 家城佳, 高エネルギーニ ユース 32-2, 59 (2013).
- [5] 奥村公宏, 亀田純, 中山祥英, 大谷将士, 中家剛, 高 エネルギーニュース **30-2**, 89 (2011).
- [6] K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 112, 061802 (2014) doi:10.1103/PhysRevLett.112.061802 [arXiv:1311.4750 [hep-ex]].
- [7] R. Wendell, PoS ICRC2015 (2015) 1062.
- [8] Alexandre Sousa, arXiv:1502.07715 [hep-ex].
- [9] P. Adamson *et al.*, Phys.Rev. D **93** (2016) 051104.
- [10] M. G. Aartsen *et al.*, Phys.Rev. D **91** (2015) 072004.
- [11] Particle Data Group 2015.
- [12] G.J. Feldman and R.D. Cousins, Phys. Rev. D 57, 3873 (1998).
- [13] K. Abe *et al.*, Phys. Rev. Lett. **107**, 241801 (2011).
- [14] P. Adamson *et al.*, Phys. Rev. Lett. **108**, 191801 (2012).
- [15] K. Abe et al., arXiv:1609.04111 [hep-ex].
- [16] C. Patrignani, Chin. Phys. C 40, no. 10, 100001 (2016). doi:10.1088/1674-1137/40/10/100001