ADMX 実験の過去,現在,未来

ワシントン大学

新田龍海

tnitta1@uw.edu

2022年(令和4年)2月1日

1 はじめに

ADMX 実験はワシントン大学(シアトルキャンパス) に実験サイトを持つ, 暗黒物質アクシオン探索実験であ る。四半世紀に渡る歴史を持つ実験ではあるが, 今まで あまり日本人が関わってこなかったこともあり, 名前は 知っているが中身の知れない実験という印象を持つ方が 多いのではないだろうか。そこで本稿では, ADMX 実 験の最新結果に加え, ADMX 実験がいかに発展してき たか, 今後の計画を交えて紹介したい。興味のある方に ADMX 実験を少しでも身近に感じてもらえればと思う。

2 背景

2.1 強い CP 問題

1976年に Gerardus 't Hooft 氏はインスタントンを考 慮することで $U(1)_A$ 問題を解決できることを示し, *CP* 対称性を破るラグランジアンのトポロジカル項と付随す る位相パラメータ θ に依存する真空状態, θ 真空を予言し た。似たような位相パラメータはクォークの質量項にも あり ($\theta_{\rm EW}$), ゼロでない値を取る。その和 ($\bar{\theta} = \theta + \theta_{\rm EW}$) が結果的に強い相互作用の *CP* 対称性の破れの度合い を司っており, $\theta_{\rm EW}$ を θ がキャンセルしない限り *CP* 対 称性は破れる。

 $\pi^+ \ge \pi^0$ の質量の違いは近似的に $\bar{\theta}$ の大きさによって いるため, $\bar{\theta}$ が小さいことは $m_{\pi^0} \approx m_{\pi^+}$ から直ちにわ かる。現在では,中性子の電気双極子モーメントの測定 結果から, $\bar{\theta} < 5 \times 10^{-11}$ [1]に制限されており,多くの人 が偶然キャンセルされたと受け入れられる精度を遥かに 超えているであろう。これが強い*CP*問題である。

2.2 波状暗黒物質アクシオン

1977年, Roberto Peccei 氏と Helen Quinn 氏は, 新た なU(1) 対称性 (PQ 対称性)を導入し, $\bar{\theta}$ をダイナミカ

ルな変数とすることを提案した。これにより宇宙の冷却 によって PQ 対称性が自発的に破れ、QCD のクロスオー バーによってそのポテンシャルの極小点 ($ar{ heta}=0$) に落ち ることにより,自然に強い CP 問題は解決する。翌年, Frank Wilczek 氏と Steven Weinberg 氏 によって, CP 対称性の破れに伴う南部ゴールドストーンボソンが予言 され、アクシオンと名付けられた1。1980年前後に、暗黒 物質の宇宙論的観点からの性質が精査され,晴れて暗黒 物質の有力な候補と認知されるようなる。結合定数はモ デルによって変わるが、E/N(電磁アノマリと QCD ア ノマリの比)²が0の KSVZ と 8/3の DFSZ モデルが広 くベンチマークとして受け入れられている [2]。一般に 加速器や宇宙観測の制限から、アクシオンの質量は1 eV 以下と考えられている。非常に軽い暗黒物質のド・ブ ロイ波長は暗黒物質間の平均距離より長くなり、ド・ブ ロイ波長内の暗黒物質はコヒーレントな波としての性 質を発現する。このような暗黒物質は一般に "Wavelike Dark Matter"(波状暗黒物質)と呼ばれ、WIMP などの 粒子的性質に支配される暗黒物質, "Particle-like Dark Matter"と対をなす概念である。直感的なイメージとし て,たとえばアクシオンの質量が O(1 μeV) 程度であれ ば, O(100 m) 程度の大きさのコヒーレントなアクシオ ンレーザーパルスが, 1 ms ごとに地球を通過している。

2.3 アクシオンハロスコープ

それほどの頻度でアクシオンの巨大な波が地球を 通過しているのにも関わらず観測が難しい一つの理 由は、DFSZ モデルの予言する光子との結合定数が 10⁻¹⁷-10⁻¹² GeV⁻¹ と極めて小さいためである。 初 めて現実的なアクシオン探索手法,"アクシオンハロス コープ"(以後ハロスコープと呼ぶ)を考案したのは, Pierre Sikivie 氏であった [3]。概略図を図1に示す。ハ

¹Axion という洗剤の名前から取られたことは有名であるが, その 会社が "CP"という略称で呼ばれていることは興味深い偶然である。 ²光子との結合定数は, 微細構造定数 (α) とアクシオンの崩壊定数

ルナこの市口上数は、「飯粕梅垣上数 (α) どアクジオジの開環定数 (f_a) を用いて、 $g_{a\gamma\gamma} \sim \alpha(E/N - 1.95)/(2\pi f_a)$ と表せる。

図 1: ハロスコープの概略図。磁場 (\vec{B}) から得られる仮 想光子と相互作用したアクシオン(点線の曲線)は, 共 振空洞の側面に有効電流 ($\vec{j_a}$) を発生させ, 特定の共振 モード (\vec{E}) で増幅される。共振周波数は検出器内に設置 された棒によって同調される。増幅された電磁場はアン テナの電子を動かし, RF 信号 ($\vec{j_e}$) として取り出される。

ロスコープは超高感度な RF 信号レシーバーと強磁場を 組み合わせた装置である。アクシオンは強磁場, すなわ ち多数の仮想光子により, 図1に示すファインマン・ダイ アグラムの素過程によって光子に変換される。その周波 数はアクシオンの質量(とわずかな運動量)で決まる。 共振空洞を置くことで, コンプトン波長が共振周波数に 近ければ, 光子に変換されるアクシオンの状態密度が上 がり, 変換効率が格段に向上する。この結果, 共振空洞の 内壁を流れる有効電流 (*j*_a, これは電子の移動による電 流とは異なる)によって励起された共振モードがアンテ ナの電子を動かすことにより, 検出可能な交流(RF 信 号)として読み出される。以上がハロスコープの概要で ある。現在までに多数の実験原理が提唱されているが, 約 40 年前に示された Sikivie 氏のアイデアだけが, 唯一 DFSZ モデルに到達できている。

3 ADMX 実験の歴史

筆者は 2020 年に ADMX コラボレーションに参加し たため, ADMX 実験のほとんどの歴史を経験していな い。ここでは ADMX 実験を立ち上げたコラボレータた ちに聞いた話を元に, どのようにして現在の ADMX 実 験に至ったかを簡単にご紹介する。 Sikivie 氏は同僚の実験家である David Tanner 氏, Neil Sullivan 氏や少数の大学院生と共にフロリダ大学で初期 の R&D をはじめた。その磁場は 7.5 T と現在の ADMX 実験と同等だが、有効体積は5%程度ほどしかなかった。 感度は遠く及ばないものの, 机上のアイデアであったハ ロスコープが、このとき初めて実際の検出器として組み 上げられた [4]。同時期に, ロチェスター大学, ブルック ヘブン国立研究所, フェルミ国立研究所 (RBF) のグルー プも実験をはじめ、Sikivie 氏のアイデアに基づいた結 果を出している [5]。2 つの実験の大きな違いは, 共振 空洞の周波数同調方式の違いにあった。フロリダ大は今 の ADMX 実験と同じく金属棒を動径方向に動かす方式、 RBF は共振空洞の軸方向に金属棒を挿入していく方式 で、前者は感度に優れる3ものの同調範囲が狭い弱点が あった。いずれにせよどちらの実験の感度も有力なアク シオンモデルに足りていなかったため,最大限の感度を 得られるフロリダ大の方法が現在では主流となってい る。この実験でフロリダ大のグループは、大きな共振空 洞を作ることで KSVZ モデルに到達できるという確か な感触を得て、次の段階へ進んだ。

3.2 ADMX 設立, リバモアにて

1993年,前述のフロリダ大のグループに加え,当時 MIT の助教だった Leslie Rosenberg 氏(現ワシントン 大学教授)とローレンス・リバモア国立研究所の Wolfgang Stoeffl 氏らが加わり, ADMX (Axion Dark Matter eXperiment) コラボレーションを設立した⁴。リバモア に設けられた実験サイトには、最大8Tの磁場と20倍 大きい体積を持つ(約200ℓ)超伝導磁石が設置された。 この磁石は現在の ADMX 実験でも引き続き使われてい る。フロリダ大にて培ったハロスコープの技術全般と, MIT で開発された低ノイズ RF 受信システム, リバモア の低温技術が組み合わされ, 2001年, ADMX コラボレー ションとしての初めての物理結果が発表された [6]。こ の結果では、ついに 3 μeV 程度の KSVZ モデル、すなわ ち暗黒物質アクシオンの有望なモデルに初めて感度を持 つことに成功した。これは大きなマイルストーンである ものの、もっとも有望であると考えられている DFSZ モ デルまで到達するには、RF 信号のパワーに換算して約 1/10の小さな信号を検出しなければならない。

3.1 初期の R&D, フロリダ大にて

1980年代前後に急速に発展した理論的理解と Sikivie 氏のハロスコープのアイデアによって,時代は暗黒物 質アクシオンの存在実証フェーズに移行した。1985年,

³フォームファクター(アクシオンで誘起される電場と,印加磁場 の並行成分の割合)が大きい。

⁴Galactic Axion Search Project(GASP) も候補としてあったが, 略称がネガティブな意味なので棄却され, Sikivie 氏提案の ADMX に 落ち着いたらしい。

3.3 量子技術の適用, ワシントン大にて

そのころ Rosenberg 氏は、量子デバイスで著名な John Clarke 氏の講演を聞き、ADMX 実験のアンプを DC-SQUID を用いた量子アンプ(SQUID アンプ)に置き換 えることを着想した。DC-SQUID は2つのジョセフソン 接合を持つループ状の回路であり,磁束量子以下の極小 磁場に対して非線形な応答をする。SQUID アンプでは, アクシオン由来の RF 信号をコイルで磁場に変換し, そ れを DC-SQUID の非線形性を利用して RF 信号に再変 換することで,極めて低ノイズな増幅を実現する。ノイ ズ量は素子の物理的温度に比例し、原理的には不確定性 関係からくる標準量子限界 (~30 mK at 1 GHz) までの 低ノイズ化が可能である。このノイズ量は従来の HFET (Heterostructure Field Effect Transistor) アンプに比べ 約 1/10 であり, ちょうど DFSZ を検出可能な感度を実 現できる。最大の問題は, DC-SQUID が極端に外部磁場 に弱く、アクシオン光子変換用の印加磁場、O(10 T)を SQUID アンプ付近では地磁気, O(1 Gauss) 以下に抑え なければならない点にある。ADMX 実験では,新たな超 伝導磁石を SQUID アンプの周りに設置し, 逆方向の磁 場を発生させることで磁場をキャンセルする方法を取っ た。 このシステムの最初の運転では、SQUID アンプが 機能することを示すことにフォーカスしたため, 希釈冷 凍機は使わずヘリウム蒸発による1K程度の温度で運 転された。この結果, SQUID アンプが想定通り動作す ることが確認されたため [7], 希釈冷凍機の導入で DFSZ モデルに感度を持つことを目標とした、"ADMX-Gen2" へと進むことが決まった。実験サイトは Rosenberg 氏 がワシントン大学に移るとともに、ワシントン大学の CENPA(Center for Experimental Nuclear Physics and Astrophysics) に移設された。数年に渡るコミッショニ ングで, 超伝導磁石のクエンチなど多数の問題を乗り越 え、最終的には想定通り 100 mK 程度へのシステムの 冷却に成功し、ついに実験データの取得にこぎつけた。 2018 年, ADMX 実験は DFSZ モデルに到達したことを 論文に発表した [8]。Peccei・Quinn 両氏の着想から実に 41年後のことであった。Sikivie 氏のアイデア, Tanner・ Sullivan 両氏の RF 技術, Rosernberg 氏の果てしない情 熱, そして Clarke 氏の量子技術が実った瞬間であった。

4 ADMX 実験の現在

ADMX 実験が 2018 年に達成した DFSZ モデルへ の感度は一つの大きなマイルストーンであるが, 探 索したアクシオンの質量範囲は, 狭義の有望な範囲⁵,

図 2: ワシントン大学の実験サイトにて, DFSZ 到達を 祝う ADMX コラボレータたち(2017 年)。

O(0.1 μeV)-O(100 μeV) に比べてもたった 0.1%であ る。道のりは容易ではないが, 今後探索範囲を広げてい くたびに, 常に発見の可能性があるエキサイティングな時 代ともいえる。 ADMX 実験は 2018 年の結果の後, 2019 年に探索範囲を更新している [9]。ここでは ADMX 実 験が 2021 年に出版した最新の暗黒物質アクシオン探索 結果 [10] を解説する。

4.1 検出器

図 3 に ADMX 実験の概要図を示す。136ℓの体積を 持つ銅メッキされたステンレススチール製の共振空洞が, 7.5 Tの超伝導ソレノイド磁石(Wang NMR 社製)の中 に収められており、ここでアクシオン光子変換が起こる。 共振空洞の負荷 Q 値(共振の鋭さ)は8万程度である。 これは信号が8万倍に増幅されることを意味する。共振 空洞内に設置された2本の銅製の棒が動径方向に移動す ることで共振空洞の境界条件を変え、共振周波数をスキャ ンできるようにしている。共振空洞にはエンドキャップ 部分から可変長アンテナが挿入されており, 共振空洞と アンテナの結合(どれだけのエネルギーをアンテナで拾 うか)を調整できる。運転中は臨界結合および過結合状 態にしてスキャン速度を最大化している⁶。銅製の棒と アンテナは室温の検出器最上部に設置されたステッパー モーターと, 熱伝導率が低いガラス繊維 (G10) で作られ た長い棒によって接続されている。共振空洞と量子アン プなどは 800 µW@ 100 mK の冷却性能を持つ希釈冷凍 機 (Janis JDR-800) で 100 mK 程度に冷却されている。 超伝導磁石と HFET アンプ (LNF-LNC0.6_2A) は液体 ヘリウムによって4K程度に保たれる。図4にADMX 実験の簡易的な RF ダイアグラムを示す。アンテナで受 信した RF 信号は, 信号損失と熱伝導性が共に極めて小

 $^{^5}$ 初期位相 $\theta > 0.1$ の preinfrationary model や postin
frationary model。

⁶過結合状態では Q 値は劣るが, その分広い範囲の増幅がスキャン 速度に効果的に寄与する。

図 3: ADMX 実験の概要図 [11]。

さい NbTi 超伝導 RF ケーブル (KEYCOM) にて, 量子 アンプがあるゼロ磁場領域に転送される。現在の ADMX 実験では、より広帯域の増幅が可能な DC-SQUID を5つ 組み合わせた Josephson Parametric Amplifier (JPA)⁷ を使用している。RF 信号は図 4の JPA Pump から入力 されるパンプ光と共に JPA に入射し、四光波混合過程で 増幅される。このときの JPA の共振周波数 $(1/\sqrt{LC})$ は, DC-SQUID に流す DC 電流によってインダクタンスを 微調整し、目的の周波数で増幅を起こす。このときのノ イズはアイドラー環境, すなわち信号周波数から数 MHz 以内の黒体放射由来のノイズに支配されており, ADMX 実験の場合は~100 mK 程度である。JPA は極めて磁 場に影響されやすいために、さらに3層のミューメタル シールドで覆われている。その結果, JPA の DC-SQUID を磁場センサーと考えて逆算すると、JPA 内部の磁場は ミリガウス(地磁気の1/1000)程度にまで抑えられてい ることが推察されている。RF 信号は JPA で約 20 dB 増 幅された後,信号の逆流を抑制するためのサーキュレー ター (QUINSTAR QCY-G0080121AS) を経て, JPA へ の熱流入を抑制するための超伝導ケーブルで接続され た HFET アンプでさらに 40dB 程度増幅, 最終的にス ズメッキ銅製の RF ケーブルで室温まで取り出される。 HFET アンプのノイズは JPA の増幅により相対的に小 さくなり, 全体の 10%, HFET 以降のシステムの寄与は

図 4: ADMX 実験の簡易的な RF ダイアグラム [10]。 *C*₁, *C*₂, *C*₃ はサーキュレータを表す。JPA には方向性結 合器(白抜き長方形)によってパンプ光が注入される。 灰色の長方形は温度が高いステージからの黒体放射を遮 断するための減衰器を示す。

1%程度でありほぼ無視できる。室温では HFET アンプ でさらに 40dB 増幅し, 混合器で 10.7 MHz に変調され, デジタイザ (Alazar digitizer) で記録される。ハードウェ アのさらなる詳細は [11] を参考にしていただきたい。

4.2 SAG システム

ADMX 実験では,人工的に作られたアクシオン信号 (Synthetic Axion Generator: SAG) を図 4に示す Weak Port から共振空洞に注入し,それを前節で説明した RF システムで検知することで,RF システムと解析の正当 性を担保している。SAG は室温にある RF 信号発生器 (Agilent 33220A) でマクスウェル分布を再現し,リモー トコントロール可能な混合器と減衰器を通して DFSZ 信 号程度まで減衰させてから共振空洞に注入している。こ のとき,SAG の周波数とそのパワーは少人数の SAG 管 理者によってコントロールされており,運転者と解析者 には知らされておらず,厳格なブラインドテストが可能 になっている。

⁷カリフォルニア大学バークレー校の Siddiqi 研究室が ADMX 実験のために製作したもの。

図 5: 健全な SMA コネクタ(左図)と, 実際に埋没した SMA コネクタ(右図)の中心導体。

4.3 データ取得

2019 年秋からデータ取得を開始したが, 直後にノイズ 量が想定より 10 倍以上大きいことが判明した。アクシ オン探索のスキャン速度は, ノイズ量の二乗に反比例す るため, これでは一向にスキャンが終わらない。そのた め, 2019–20 年冬に検出器を常温に戻し, 総点検をおこ なうことになった。様々な点検の結果, TDR 測定で検出 器上部から約 3 m の部分に顕著な反射があることがわ かった。RF ケーブルを外してみると, 図 5 で明らかな ように SMA コネクタの中心導体が埋没していた。恐ら く温度変化か過度な屈曲によるものであろう。これが信 号を顕著に減衰(逆方向に反射)させており, ノイズ量 が多く見積もられていたことがわかった。該当部位を信 頼できる製造元の製品に交換し, 再び 2020 年 3 月には 100 mK まで冷却した。

データ取得を再開しようとしたが, ここでまた問題が 発生する。JPA のゲインが不安定(10 dB 以上変動)で ノイズ量が想定よりも大きいのだ。様々な可能性が考え られたが, 結局のところアクシオン探索用の磁石と磁場 をキャンセルするための磁石の磁場の不一致が原因で あった。限度を超える外部磁場は SQUID のループ内に 磁束量子として入り込み, 図 6 に示すように不安定な共 鳴を生み出す。一度入り込んだ磁束量子を追い出すため には, 超伝導転移温度(アルミニウム:~ 1.2 K)を超え て再度超伝導に戻す作業が必要となった。温度サイクル 後, 再度磁場を調整し直したところ, 比較的良好な JPA の性能を得ることができた。以後, 6 月より実験データ 取得を再開し, 2021 年 5 月まで概ね安定した運転をおこ なった。

4.4 解析

前節で解説したデータ取得では 800 から 1020 MHz (アクシオン質量に換算して 3.3–4.2 μeV)をスキャン し, 計約 20 万のパワースペクトルを得た。一つのパワー スペクトルは RF 信号を 10 ms 毎にフーリエ変換した

図 6: *x*軸に周波数, *y*軸にバイアス電流, *z*軸に JPA の 反射の位相を取った JPA の共鳴。左図は外部磁場によっ て磁束量子が入り込んだ状態, 右図は健全な状態。

100 秒間の平均から成り, 50 kHz の帯域幅(100 Hz の 分解能 × 500 ビン)を持つ。 本来黒体放射のパワース ペクトルは極めて平坦であるはずだが、実際に記録され るパワースペクトルは共振空洞と JPA 間の定在波や混 合器によって歪められている。アクシオン信号はこの歪 み (> 数 10 kHz) に比べ有意に細い (数 kHz) ため、パ デ近似によって歪みのみを取り去ることができる。その 後平坦になったパワースペクトルの細かい揺らぎの大き さがガウス分布(正確には自由度2万のカイ二乗分布) を成すことを利用し、デジタイザで記録したパワーを共 振空洞内のパワーに焼き直す。この際に利用するノイ ズ温度は、パワーがノイズ温度に比例することを利用し て in situ で測定される。ADMX 実験では "Hot Load" (図4)をわずかに熱して得られるパワーの変化を利用 する y-factor 測定と, JPA のパンプ光の on または off 状 態での S/N 比の変化を利用する SNRI 測定を組み合わ せて測定し,約600 mK という結果を得た。この値は各 種温度センサーから予想される理想的なノイズ温度より 数百 mK 大きいため, 余計なノイズが入り込んでいる可 能性を示唆する。これらの原因の考察は第五章に譲る。 この後すべてのパワースペクトルは誤差で重み付けして から足し合わされ、一つの大きなスペクトルとして再構 成され,アクシオン信号があるかテストされる。

以上の解析の結果, 15 個の有意なパワー超過が観測さ れた。今回の周波数帯は FM ラジオや Wi-Fi の周波数 に近く, この周波数帯でもっとも高感度な ADMX 実験 でそのような人工的信号が検出されることは想定内で ある。アクシオンと区別するために, まず実験サイトに あるスペクトラムアナライザに簡易的なアンテナ(RF ケーブルの中心導体をむき出しにしたもの)をつけて同 じ周波数の超過を見つける事ができるかテストした。磁 場がなく感度に劣るこのテストで超過が見つかれば, そ れはアクシオンではない。このテストは単純であるが強 力で, 7 個の超過が棄却された。また, ADMX 実験では 共振周波数を少しずつずらしてパワースペクトルを取得 しているが, 共振空洞内にある信号であれば, その超過

図 7: TM₀₁₀ モードと TM₀₁₁ モードの電場分布(赤矢 印)の比較 [10]。超伝導磁石によって印加される磁場は 黒矢印で表される。

の大きさはローレンツ分布を成すはずである。残ったう ち7個の超過はパワーがまったく変化せず、キャビティ 外の RF システムのどこかで入り込んだ信号と判断され た。残るは 896.5 MHz 付近の一つの超過である。アク シオンの可能性があるため慎重に性質を精査しなければ ならない(解析のもっとも面白い瞬間である)。個別の ラインシェイプはどれも標準ハローモデルで予言される マクスウェル分布を成し、周波数も非常に安定している。 超過のピークが成すローレンツ分布の Q 値もネットワー クアナライザで得られたQ値と矛盾なく, 共振空洞内か らの信号であることは確かであった。従来の ADMX 実 験の解析手順であれば磁場を段階的に落とし,信号が予 想通り (∝ B²) 消えるかどうかテストするところであっ たが、このテストには時間がかかる。その前の追加のテ ストとして、今回の論文では TM₀₁₁ モードでの観測が追 加された。図7にアクシオン探索に用いる TM010 モー ドと、今回のテストに使った TM011 モードの電場分布を 示す。どちらの電場も磁場に並行であるため局所的なア クシオン光子変換効率はよいが⁸, TM₀₁₁ モードの場合 は位相が共振空洞の上下で反転しているため, アクシオ ン場によって誘起された電流は常にキャンセルされる。 したがって, TM₀₁₁ でも超過があれば, それはアクシオ ンではないといえる。 図 8 に実際のパワースペクトル (パデ近似後)を示す。中央図の下部の複数のパワース

図 8: 中央図:SAG 信号のパワースペクトルを共振空 洞のTM₀₁₁ モード(上部,赤)とTM₀₁₀ モード(下部, 黒)で取得したもの。下図:DFSZ 信号の大きさに対す る SNR(信号と背景事象のパワーの比)を示したもの。 右図:各パワースペクトルの最大パワーをプロットした もの。TM₀₁₁のパワーが若干大きいのは,SAG 信号を 注入するアンテナ(図 4 の Weak Port がつながってい る部分)の結合が,TM₀₁₀ モードに比べTM₀₁₁ モード に対して若干よいためと考えられる[10]。

ペクトル (黒) は TM₀₁₀ モード, 中央図の上部 (赤) が TM₀₁₁ モードで取得されたパワースペクトルである。ど ちらも顕著な細いピークが確認できる。したがって, これ はアクシオンではないと結論付けられた。その後, SAG 管理者からそれがブラインドテストのために注入された SAG 信号であることが明かされた。アクシオンではな いのは大変残念ではあるが, 検出器の運転と解析の正当 性を再確認できた。解析の詳細は [12] を参照していた だきたい。

4.5 結果

以上の解析の結果, すべての超過はアクシオンではな いと判断されたため, アクシオン光子結合に対して上限 を設けた(図 9)。800から 1020 MHz の KSVZ モデル を棄却, 950から 980 MHz の DFSZ モデルを棄却した。 今回の結果は 2018, 2019年の結果と比べると約二倍に 探索範囲を拡大しており, 900 MHz 以上では以前の世界 最高感度の制限である CAST 実験の結果 [13] から約 5 桁(パワーにして 10 桁)の改善を達成している。

⁸アクシオンと光子の相互作用ラグランジアンは, $\mathcal{L} = -\frac{g_{a\gamma\gamma}}{4}F_{\mu\nu}\tilde{F}^{\mu\nu}a = g_{a\gamma\gamma}\vec{E}\cdot\vec{B}a_{\circ}$

図 9: 横軸を光子周波数 (MHz) またはアクシオン質量 (µeV) にとった, アクシオン光子結合に対する 90%信頼 区間の上限 [10]。左から ADMX 実験の 2018 の結果 (水 色, ~650–680 MHz), 2019 年の結果 (オレンジ, ~680– 800 MHz), 2021 年の最新結果 (赤, ~800–1020 MHz)。 濃い色はアクシオンの速度分布に標準ハローモデルを採 用し, 暗黒物質を 0.45 GeV/cc と仮定した場合, 薄い色 は N 体シミュレーションで求めたアクシオンの速度分 布と密度 (0.60 GeV/cc) を採用した場合。

5 ADMX 実験の未来

5.1 直近の計画

4章で述べたように、ノイズ温度が予想より高かった (600 mK) ため, 最新の結果では大部分で DFSZ モデル を探索できなかった。ノイズ温度には RF システム全体 が影響するため無数の可能性, JPA の雑音, 数百点に上 る RF 測定系のいずれかのパーツの伝達効率が悪い, 温 度センサーの誤測定など、極低温下でどの寄与か特定す ることは極めて難しい。そのため 2021 年夏に検出器を 常温に戻し,可能性のある部分を総点検することにした。 JPAと サーキュレーターは些細な磁化で性能が落ちる 可能性があるため、周りを取り囲むミューメタルシール ドとともに予備のものと交換した。RF ケーブルは総点 検し、目視やネットワークアナライザによる確認、液体 窒素に複数回浸して熱的収縮に耐えうるかなどをテスト した。JPA のアイドラー環境を司る Cavity Bypass ラ インの 100 mK ステージにある減衰器は、今まで他の 減衰器とまとめて 100 mK に冷却されていた。確実に 100 mK に冷却されていることを担保するため、新たに OFHC 銅で誂えた専用の放熱板を温度センサーととも に、希釈冷凍機の混合室の近くに設置した。またデータ 取得のための冷却直前には、複数人によるすべてのコネ クタ・ネジ類のより厳しい品質管理が課された。図 10 にメンテナンスの様子を示す。冷却後は同じ周波数帯の データを再取得し、2022 年以内に全領域での DFSZ モ デルの探索を達成する予定である。

図 10: 2021 年夏から秋にかけておこなわれたメンテナ ンスの様子。銀色の円筒は液体ヘリウムのリザーバータ ンク(中に JPA などの量子アンプが収められている), 中間に RF システムや希釈冷凍機,下部の銅色の円柱が 共振空洞である。左が ADMX コラボレーション共同代 表の Gianpaolo Carosi 氏, 右が筆者。

5.2 長期計画(~10年)

図 11 に現在の各種実験のアクシオン光子結合に対す る上限と、ADMX 実験の今後の計画を示す。ADMX 実 験では ADMX Gen2 プログラムとして, 米国の DOE か ら助成を受けており,約8 µeV まで数年のタイムスケー ルで探索を遂行する予定である。約6 µeV までは現在 の共振空洞に外径を大きくした金属棒を用いることで対 応できるが,約 6-8 µeV では外径の小さな共振空洞を 4 つ用いることで,有効体積を維持しつつ高い共振周波数 を実現する計画である。すでにフルスケールの共振空洞 がローレンス・リバモア国立研究所にて作成され、フェ ルミ国立研究所でテストされている。測定された Q 値 は現在の ADMX 実験のものと遜色ない。共振周波数の 同調にはステッパーモーターではなく、 ピエゾモーター を使用することで、共振空洞の多頭化に伴うスペースの 減少に対応している。4つの共振空洞から得られる信号 は電力合成器によってアナログに合成され、以後の RF 測定系の基本構造は概ね現在と同じである。

さらに 8–16 μeV の実験計画は,ADMX-EFR (Extended Frequency)と呼ばれ,実験サイトを抜本的に刷 新する。イメージ図を図 12 に示す。磁石は 9.4 T を発 揮する実験用 MRI 磁石に置き換えられ,有効体積は約 2 倍,磁場は 20%増,結果得られるスキャン速度は約 4.8 倍に増強される。最新結果の運転でも苦労しているよう に,JPA などの量子 RF デバイスは磁場に弱く,繊細な 運転が必要である。この問題を解決するために,繊細な RF デバイスを MRI 磁石から 5 m 程度物理的に離し,磁 場キャンセル用の磁石を用意することなく量子デバイス を動作させる計画である。希釈冷凍機を 2 台用意する必

図 11: 横軸を光子周波数 (MHz) にとった, 様々な実験 のアクシオン光子結合に対する 90%信頼区間の上限。 ADMX 実験の実験フェーズをそれぞれ塗りつぶしてい る。

図 12: ADMX-EFR の概念図。最大磁場 9.4 T の MRI 磁石の中にある 18 本の共振空洞内でアクシオンから変 換された光子信号は,残存磁場が 0.01 Gauss 以下の約 5 m 離れた初段アンプ (JPA) に送られる。信号は独立 に増幅されるために,光子転送回路と JPA は共に 18 個 ある。

要があるが,この副産物的な恩恵として,大きな熱容量 をもつ共振空洞と冷却システムが独立になるために,量 子デバイスの温度は現在の25%程度になり,ノイズ温度 の低減も達成できる計画である。共振空洞はさらなる高 周波数を実現させるために18まで多頭化する予定であ り,すべての信号は独立に転送,増幅,デジタル化され, より損失が低く理想的なデジタル信号合成を採用する予 定である。

6 まとめ

四半世紀を超す R&D を経て, ADMX 実験が DFSZ モ デルへの感度を達成したことにより, 暗黒物質アクシオ ン探索は真に発見フェーズへと移行した。アクシオン探 索をするわれわれの世代は, この積み上げられてきた知 識と経験を活かして, 探索範囲を広げることが一つの使命 である。世界を見るとアクシオン探索実験は近年多数発 足しており, 絶縁体ディスクを用いる Orpheus [14], ホー ン形の金属板を使って広帯域検出を狙う BREAD [15], プラズマで大型化を狙う Alpha [16], レーザー干渉計で sub-µeV 領域を狙う DANCE [17] など, 魅力的な実験 を挙げればきりがない。さらに言えば, 近年の量子コン ピュータの関連技術の発展と物理実験への応用に関する 潮流は, アクシオン探索に革命を起こす可能性を秘めて いる。ぜひとも今後のアクシオン探索の発展と結果を楽 しみにしていただければと思う。

謝辞

丁寧に ADMX 実験の歴史を解説してくださった David Tanner 氏,本稿執筆に有用な助言を与えてくださった Gray Rybka 氏に心から感謝いたします。筆者は日本学 術振興会海外特別研究員 (202060305) として派遣されて います。また ADMX 実験は DOE などの助成を受けて 実現しています。

参考文献

- [1] C. Abel *et al.*, PRL, **124**, 081803 (2020).
- [2] P. Sikivie, RMP, **93**, 015004 (2021).
- [3] P. Sikivie, PRL, **51**, 1415–1417 (1983).
- [4] C. Hagmann et al., PRD, 42, 1297–1300 (1990).
- [5] W. U. Wuensch *et al.*, PRD, **40**, 3153–3167 (1989).
- [6] S. Asztalos *et al.*, PRD, **64**, 092003 (2001).
- [7] S. J. Asztalos et al., PRL, **104**, 041301 (2010).
- [8] N. Du et al., PRL, **120**, 151301 (2018).
- [9] T. Braine *et al.*, PRL, **124**, 101303 (2020).
- [10] C. Bartram et al., PRL, 127, 261803 (2021).
- [11] R. Khatiwada et al., RSI, 92, 124502 (2021).
- [12] C. Bartram *et al.*, PRD, **103**, 032002 (2021).
- [13] V. Anastassopoulos *et al.*, Nature, **13**, 584-590 (2017).
- [14] C. Cervantes, arXiv:2112.04542 (2021).
- [15] J. Liu et al., arXiv:2111.12103 (2021).
- [16] M. Lawson *et al.*, PRL, **123**, 141802 (2019).
- [17] K. Nagano *et al.*, PRL, **123**, 111301 (2019).