Ozaki Exchange Program 2024 活動報告

東京大学理学系研究科物理学専攻博士課程2年 児玉将馬 shoma@hep.phys.s.u-tokyo.ac.jp

2024年(令和6年)10月2日

1 はじめに

私は日米科学技術協力事業 Ozaki Exchange Program 2024 に参加し,2024年6月23日から8月31日まで アメリカ カリフォルニア州の SLAC National Accelerator Laboratory に滞在し研究をおこなった。期間中 は、アメリカで建設予定の長基線加速器ニュートリノ 振動実験である Deep Underground Neutrino Experiment (DUNE) に関わり、超新星ニュートリノ測定のた めに SLAC で進められている新しい液体アルゴン Time Projection Chamber (LArTPC)の開発に携わった[1]。 データ収集システムを構築し、光検出器である MPPC の性能評価、また、LArTPC プロトタイプの建設をお こなった。

2 活動内容

SLAC ニュートリノグループでは MeV スケールの物 理のため,新しい LArTPC の R&D を進めている。こ の LArTPC の目的の一つは,ニュートリノとアルゴン の反応断面積を測定する DUNE 実験の補助実験で使用 することである。また将来的には宇宙に LArTPC を飛 ばし,MeV 程度のガンマ線を捉えることも目標として いる。

2.1 SLArpaas

上記の目標に向け,SLArpaas と呼ばれる新しい LArTPC プロトタイプを SLAC で建設中である。サイ ズは5×5×5 cm³ と小型である (図1)。いくつかのグ ループが R&D に関わっているが,DUNE グループは 光読み出しに焦点を当てている。36 個の MPPC を使用 し,4 個の MPPC (S13360-9935)を1つのチャンネル で読み出す。読み出しはデジタイザーで行い,CAEN の DT5560SE を使用する。DT5560SE は 32 チャンネルの アナログ入力があるが,そのうち9 チャンネルを使用す

図 1: SLArpaas LArTPC の外枠。

る。このデジタイザーはユーザーがファームウェアを書 くことができる。

2.2 DAQ システム

SLArpaas で用いるファームウェアを作ることが最初 のテーマであった。ファームウェアへの要求は以下の通 りである。

- •9個のアナログ入力
- セルフトリガーと外部トリガー
- トリガー前後でのデータ取得
- 10 µs 以上のサンプル長
- タイムスタンプ
- イベント番号

作成したファームウェアの概略図は図2の通りである。 このファームウェアは上述の要求を全て満たしている。 ファームウェアと同時並行で,DAQのためのコード とデコーダーも作成し,後の解析で使いやすいようにし た。これらは私が去った後も利用されている。

図 2: SLArpaas ファームウェアの概略図。いくつかの 要素は見やすさのために省略している。2本の太い矢印 は入力データの流れを表している。

図 3: LEMO 入力から ADC までのブロック図。Shaper として DC coupling または 1, 10, 30 µs の shaping time が選択できる。

2.3 デジタイザー

2.3.1 ウェブ設定

CAEN のデジタイザー DT5560SE は図 3 に示すよう に LEMO のインプットと ADC の間にいくつかのブロッ クを有する。ここで用いられるゲインやオフセットといっ たパラメータをウェブインターフェースを通じて設定す ることができる。

これらの設定が正しく動作しているか,簡単なファー ムウェアを作成し,100 mV の負のパルスを入力するす ることで確認した。デフォルトの設定ではベースライ ンが 8190 付近 (14 ビットの中心) で,パルスの高さが 230 ADC 程度であり,ゲインやオフセットを変えると 正しく信号の大きさや位置が変化することを確認した。

2.3.2 DAQ レート

デジタイザーおよびファームウェアの理解の一環とし て, DAQ のレートをサンプル長や波形を取得するチャ ンネル数を変えて確かめた。予想通り, レートはサンプ ル長やチャンネル数に依存して変化し, 10 μs・16 チャ ンネルでは 30 Hz 程度であった。

図 4: 入力パルスの大きさ (mV) と出力パルスの大きさ (ADC) の比率の入力パルス依存性。

2.3.3 ベースライン

同様の CAEN のデジタイザーを用いている ICARUS 実験では、ベースラインが時間変動することが確認され ているため、アナログ入力を繋がずにベースラインの位 置の変動を確認した。数秒程度の短い時間スケールと1 時間程度の長い時間スケールでチェックし、どちらの時 間スケールでも変動が見られないことを確認した。

2.3.4 線形性

パルスをアナログ入力に入れることで,デジタイザー の線形性を確認した。入射パルス (mV) と出力 (ADC) の変換因子はチャンネルによりやや異なるが,図4に示 すようにどのチャンネルも約 2.3 ADC/mV であった。 この値は 7.5 V のダイナミックレンジと 14 ビットから 得られる値 (2.2 ADC/mV) と無矛盾である。

2.3.5 クロストーク

線形性の確認と同じデータセットを用いて,あるチャ ンネルに入力パルスがあった時の他のチャンネルの振る 舞いを確認した。この確認から,いくつかのチャンネル の組について影響が見られたが,図5に示すように,こ の影響は非常に小さいことがわかった。

2.4 MPPC とプリアンプ

ファームウェア作成後,光読み出しの全体の流れであ る MPPC, プリアンプ,デジタイザーを繋ぎ、MPPC の出力信号を確認した。テスト用の MPPC が LED と ともに箱の中に固定されたものが既に作成されていたた め,これを使用した。またプリアンプもテスト用に作成 されたものがあったため,こちらを利用した。これらは

図 5: チャンネル 0 に信号があった時の他のチャンネル のベースラインのシフト。

図 6: 取得した波形の例。

ブラジルから半年間留学に来ていた大学院生 Leonardo Peres 氏がテスト用に使用していたものである。

2.4.1 ベースライン

プリアンプに電圧をかけると MPPC に逆バイアス電 圧をかけなくても、ごく稀に振動した信号が見られた。 現地の人に確認をしたところ、これまでも見られた現象 のようで、建物の都合であるとのことだった。滞在期間 では原因特定は不可能であると判断し、こういった信号 が見られることを引き継ぐのみにとどめた。

2.4.2 ダークレート

MPPC に逆バイアス電圧をかけると図 6 のような信 号が得られた。ある閾値を通過する立ち下がりの信号数 を閾値を変えながらカウントすると,図 7 のようにな り,最大で 1.33 MHz 程度であった。これは浜松ホトニ クスの計測している値 (2 MHz) より小さいが,偶然同 時計測数を考えると無矛盾であると言える。

図 7: レートの閾値依存性。

図 8: ダークパルスの電荷分布。

2.4.3 電荷分布

ダークパルスを積分して電荷分布を作成すると図8の ようになり,各光子数に対応するピークが見られた。こ のピークの間隔 (ゲイン)を逆バイアス電圧を変えなが ら測定し,ブレイクダウン電圧を求めると,51.9 Vと なり,別の方法で既に求められていた値と矛盾しない結 果が得られた。

2.4.4 LED

室温では MHz オーダーのダークカウントであるが, 実際の使用環境である低温下では数 Hz オーダーになる。 低温下では図 8 のような分布を得るのに長時間かかる ことになり,ダークカウントを用いた較正は現実的でな い。外部光源を用いたゲインの較正が実際の運転中に は不可欠であり,LED での較正の可能性について確か めた。

使用できたパルスジェネレータの最大出力が 2.5 V で あったため、LED にかける電圧はこの値に固定し、パ ルスの幅を変えることで適切な値を調べた。例として図 9 にパルスの幅を 200 ns に設定した時の電荷分布を示 す。この設定では光量が大きすぎるが、パルスの幅を小 図 9: ダークパルスと LED 由来の電荷分布。電荷の小 さい部分はダークパルス由来,大きい部分は LED 由来 の信号。

さくすることで較正が可能である。低温下での LED の 振る舞いについては別途調べる必要があるが, LED を 用いればゲインの較正は可能であると結論付けた。

2.4.5 プリアンプボード

上述のテストの後,9チャンネル分のプリアンプが載っ たボードが Steffen Luitz 氏によって作られ,テスト用 の MPPC と合わせて読み出し試験を実施した。上述の ベースラインの振動は引き続き見られた上で,新たに周 期の短い振動が見られたため,原因を調査しようとした が見つけることができなかった。振動のレートが小さい こと,振動が起きてもすぐ消えることなどから,現時点 では影響は小さいと判断した。ダークパルスの電荷分布 はテスト用のプリアンプを用いた時と同様の結果が全 チャンネルで得られ,このプリアンプボードは使用可能 と判断した。

2.4.6 4 MPPCs

SLArpaasでは4つの MPPCを1つのチャンネルで読 み出す。そこでテストとして、1チャンネル(4 MPPC) のみ接続し,波形の読み出しを実施した。予想通り、室 温ではダークノイズのレートが高すぎて、図10のように 常に信号が来ているような波形が得られたが、低温下で はダークレートが下がり、数光子程度の信号でもノイズ に埋もれることなく検出することが可能なはずである。

2.5 低温下での MPPC のテスト

低温下で MPPC が健全に動くか確認するため,液体窒素を用いた冷蔵庫の中で,ブレイクダウン電圧と MPPC の順方向に電圧をかけた時の抵抗 (クエンチング抵抗) の測定を Leonardo Peres 氏と共同で実施した。テスト

Waveform 7

8500

8400

8300

8200 8100

8000

ADC

図 10: 4 つの MPPC を読み出した時の波形。常にダー クパルスが来ていることがわかる。

図 11: I-V 法。横軸に逆バイアス電圧,縦軸に dI/IdV をプロットしている。

は 80 K で行なった。実際に使用する MPPC と予備も 含めて 45 個程度の MPPC について確認をおこなった。

2.5.1 ブレイクダウン電圧

ブレイクダウン電圧の測定は I-V 法で行なった。これ は逆バイアス電圧を変えながら電流を測定したときに、 ブレイクダウン電圧付近で dI/IdV が図 11 のように極 大値を取ることを利用して測定する方法である。その結 果、ブレイクダウン電圧は室温の時と比較して 10 V 程 度小さくなることがわかった。

2.5.2 クエンチング抵抗

MPPCの順方向に電圧をかけ,MPPCのダイオード としての性質を見ると,室温でクエンチング抵抗が85Ω 程度であったものが80 K では280Ωとなった。クエン チング抵抗が低温下で大きくなることは予想通りであ る。半導体としての健全性が確認できた。

2.6 SLArpaasの建設

上述のDAQシステムの構築および光読み出しのチェッ クに加えて,実際にLArTPCを沈めるデュワー容器の 建設にも参加した。途中で一度リークチェックをしたと ころ,容器のOリングがうまくはまっておらず,真空 が破れている箇所を発見した。その後,真空の確認が取 れたのち,耐圧テストを行い,問題なく使用できること を確認した。

3 研究外の活動

2ヶ月余りの滞在の間,SLACのニュートリノグルー プの方々,および同時期にサマースチューデントとし て来ていた学生とは様々な交流ができました。特にサ マースチューデントとして来ていた Leonardo Peres 氏 と Khwaish Billore 氏とは研究の際はもちろんのこと, 研究外でも多くの時間を共にしました。ニュートリノグ ループの方々にはバーベキューに参加させてもらったり, 様々な機会で食事に連れて行ってもらったりと親密な交 流ができました。

特に印象に残っているのは Kendall Mahn 氏の発案で 行った日帰り旅行です。有名な Redwood を見に Henry Cowell Redwoods State Park ヘハイキングに行った後, Santa Cruz でディナーをいただきました。研究外での 交流でお互いの文化などを知ることができました。

期間中の滞在は、アメリカ国内のプログラムである SULI/CCI interns で借りていた宿舎に一緒に入れても らいました。夜はコモンルームで映画を観たりビリヤー ドをしたりして交流しました。Intern の人たちのパー ティにも呼んでいただき、仲を深めました。

週末はサンフランシスコへ観光に行ったり,大型スー パーマーケットへ行ったりして,異文化を経験しました。 同じ宿舎にいた日本が好きという学生から,サンフラン シスコの日本街に対する日本人としての意見を求められ たため,実際に日本街へ行き,アメリカから見る日本の イメージを経験することができました。

4 謝辞

今回の渡航にあたっては、様々な方のお世話になりま した。指導教員の横山将志教授にはプログラムの応募 時に推薦書を書いていただいたり、受け入れ先の選定の 際にもアドバイスをいただきました。受け入れ教員の Hirohisa Tanaka 氏にはこちらからの受け入れのお願い を快諾していただいた上、渡航前から Zoom でお話しす る機会を設けていただき、スムーズなスタートが切れま した。Yun-Tse Tsai 氏、Gianluca Petrillo 氏、Steffen Luitz 氏とは滞在中ほぼ毎日議論をさせていただき,研 究内容および方向性を決めることができました。そのほ かにも SLAC ニュートリノグループの方々には,毎週 のミーティングでコメントをいただいたりと,お世話に なりました。

参考文献

[1] T. Shutt et al., arXiv, 2402.0090 (2024).